Microprocessors
and Interfacing

Téchnical Publications Pune’

Copyrighted material

{ Strictly Amurding tu tha Ravised Syllahus of
JNTU - 2005 Course

Microprocessors
& lnterfacing

R B T L T e TR T

JEC 05400] Third Year, B. T%SM#-HEEIEMJ Comm. [Elex. & Telemanies /LT / Bia. Medical)
Third Fear, B. Tech., Semester - [(Instru. & Comtrof)

Atul P. Godse
M. 5. Software Systems (BITS Pikani)
B.E. Indusirial Electronics

Formerty Leciurer in Department of Electronics Engg.
Vishwakarma Institula of Technology
Pune

Mrs. Deepali A. Godse
B.E. Industriai Electronics, M. E. (Computer)

Assistant Professor in Bharati Vidyapeeth's
Women's College of Engineering
Puna

Price Rs. 285/-

Visit us at : www.viubooks.com

Technical Publications pune

R e

{ } This Onfne

ZNZQ-DCF-

T R T e 4

SYllabus (Microprocessors & Interfacing)

Unit-1 (Chapter-1, 2)

An overview of B0BS, Architecture of BOBE, Microprocessor, Special functions of general purpose
registers, 8086 flag register and function of 8086 flags.
UNIT-II (Chapter-3)

Addressing modes of 8086, Instruction set of B0BG, Assembler directives simple programs,
Procedures, and Macros, '
UNIT-III (Chapter-4)

Assembly language programs involving logical, Branch and Call instructions, Sorling, Evaluation
of arithmetic expressions, String manipulation.

UNIT-IV (Chapter-5, 6)

Pin diagram of BO8&-Minimum mode and maximum mode of oparation, Timing diagram, Memory
interfacing top B0BE (Statc RAM and EPROM), Meed for DMA, DMA data trensfer method, Interfacing
with B2ATIE25T.

UNIT-V (Chapter-7)

8255 PPI-Various modes of operation and interfacing to B086, Interfacing keyboard, Displays,
Stepper molor and actuators, DA and A/D converter inferfacing.
UNIT-VI (Chapter-8, 9

Interrupt structure of BOBE, Vector interrupt table, Interrupt service routines, Introduction o DOS
and BIOS interrupts, 8259 PIC architecture and interfacing cascading of interrupt controller and its

impartance.
UNIT-VII (Chapter-10)

Serial data fransfer schemes, Asynchromous and synchronous data transfer schemes, 8251
USART architecturs and interfacing, TTL to RS 232C and R3232C 1o TTL conversion, Sampla
program of sernal data transfer, Introduction to High-speed serial communications standards, USE,

UNIT-VIII (Chapter-11)

BOS1 Microconircller architecture, Register set of 8051, Modes of timer operation, Senal port
operation, Interrupt structure of 8051, Memory and WO interfacing 8051.

(2)

Table of Contents :

Chapter 1 : An Overview of B0BS

{1-1)to(1-66)

Chapter 2 : Architecture of 8086 Microprocessor

(2-1)to(2-14)

Chapter 3 : 8086 Instruction Set and Assembly Language Programming

(3 -1) to (3-110)

Chapter 4 : Assembly Language Programs

(4-1)to(4-74)

Chapter 5 : B086 System Configuration (5-1) to (5-34)
Chapter 6 : Direct Memory Access (DMA) - B237/8257 (6-1)1o(6-28)
Chapler 7 : 8255 PPI (Programmable Peripheral Interface) (T-1)1o(7-64)

Chapter & : B086 Interrupts

(8-1)to (8- 28)

Chapter 9 : Infroduction to DOS and BIOS Interrupts

(9-1)to0(5-30)

Chapter 10 : Serial Communication

(10- 1) to (10 - 38)

Chapter 11 : 8051 Microcontroller

(11-1)to (11- 38)

Appendix - A {A-1)to (A-8)
Appendix - B (B-1)to(B-10)
Appendix - C (C-1)t0(C-8)
Chapterwise University Questions with Answers (P-1)ta(P-34)

. Features of Book

ey B0BS, BOB6/E8 Architecture, programming and interfacing.
i Free download B08B6 programs on www.viubooks.com.
; e 8051 Microcontroller architecture.

e

Large number of programming examples.

i

'y Programs using modular programming approach.
n= Practical interfacing design examples.

(3)

EEE O EEEEEEEE RS EEE RS EEEEEEEEEEEEEE SRR R

- F @ e e EerEs R ETERER

TR S EFEFEFTEATERES

Copyrighted material

L SR, s, il A e DA TR R LY

l

Microprocessors
& lntetfac.l.ng

el RGN TR N

- e e e o R o R P S i i

Atul P. Godse
M. 5. Software Systems (BITS Pilani)
B.E. Industrial Electronics

Formerly Lecturer in Department of Electronics Engg.
Vishwakarma Institute of Technology
Puna

Mrs. Deepali A. Godse

B.E. Indusirial Electronics, M. E. (Computer)
Assistant Professor in Bharati Vidyapeeth's
Women's College of Engineering

Fune

Visit us at : www.viubooks.com

<)

“Technical Publications Pune

(]

=

Microprocessors & Interfacing

ISBMN 9788184311259

All rights reserved with Technicol Publicotions. Mo part of this book should be
reproduced in any form, Electronic, Mechanical, Pholocopy or any information storage and
refrieval system without prior parmission in writing, from Technical Publicofions, Pune.

Published by :

Technical Publications Pune®
#1, Amit Residency, 412, Shawwar Peth, Puse - 411 030, India.

Frinters :

Vikram Printers

34, Parvall Indusirial Estale
Pune-Satara Road,
Pure - 411008,

Preface

Thanks to professors, students and authors of various technical books
for their overwhelming response to our books. Looking at the feedback and
the response we received from previous books, we are very pleased to
release a text book on Microprocessors and its Applications.

The purpose of this book is to fulfil a need for text stating in plain, lucid
and simple everyday language. This book provides a logical method for
explaining and it prepares a background of the topic with essential
illustrations. This text is provided with number of solved design examples
which helps students to understand the application of microprocessor and
microcontroller based systems.

The rapid spread of microprocessors in society has both simplified and
complicated our lives. To get the conceptual view of the microprocessors, it
is better to study them from the popular family like Intel. So we felt it is
necessary to introduce a book which covers microprocessors and
microcontroller with their features, internal architecture, internal organization
and design details.

This text begins with the architecture of 8085 microprocessor. It explains
all the details of B085 microprocessor such as its architecture, pin
description instruction set, memory and IO interfacing and interrupts. The
text then introduces a 16-bit microprocessor B086. It also explains the
details of 8086 like B0O85. The text also explains various peripherals and
their interfacing with microprocessors.

Finally, the text explains the 8051 microcontroller.

Acknowledgement

We wish to express our profound thanks to all those who helped in
making this book a reality. Much needed moral support and encouragement
is provided on numerous occasions by our whole family.

We are specially grateful to the great teacher Prof. A.V. Bakshi for his
time to time, much needed, valuable guidance. Without the full support and
cheerful encouragement of Mr. Uday Bokshi the book would not have
been completed in time.

Finally, we wish to thank Mr. Avinash Wani, Mr. Ravindra Wani and
the entire team of Technical Publications who have taken immense pain to
get the quality printing in time.

Any suggestions for the improvement of the book will be acknowledged
and appreciated.

Authors
Atul Godse

Deepali Godse

Dedicated 1o Neha & Ruturaj

Table of Contents

1.2 1Reqgister SIUCIUMGo 1.
1.2.2 Arithmetic Logic Uit (ALU).ot iecane e ianeaees 1-
1.2.3 Instruction Decoder

1.2.9 Timing and Control Cireuitryo iiiiiaiieiniiiianaeaan. 127

1.3.1 Power Supply and Frequency Signals.cccoveieeinrinniaianenn. 1-9
1320ataBusandAddress Bus 0 0L 1-9
1.33 Controland Status Signalsiiiiiiiiiiiiiii i iaaiaias 1-9
134 Infermupt SIgNals i iiieiiiiaa. 1-10

136 DMASIgnal TP TPTTTTT 1-10
13T Resel Signals ittt ia i iaas .1-10
1.4 Bus Organisation ettt b ernne e ean ot eanneaR et e ARt ser e pea e ae e ehrne s 1-10
1.4.1 Clock Circuits . e 111
1.4.2 Demultiplexing AD, = ADy ...\ oottt e 1-12
1.4.3 Resed Circuit e 1212
1.4.4 Generation of Control Signals e e 1-14
L B BUS DIIVBISt e 1-15
1,46 Typical Configuration. ooeveeeeneeeieeoiaeae oo 1=17

1.5 TimINg and Controlcvviiiiiiiiiiiiiisisissimsinsiinssmisssssssncsssssasssssssns sos 1-18

1.5.1 8085 Machine Cycles andtheir Timingsc0ovueriuiae..... 1-24
152Conceptof WaitStatesc.cvveeeeeeeeioo., e, 1-35
1.6 Instruction Set of BOBS ... i1 = 3T
161 Data Transher Groupttt et e e, 1-37
162 Arthmete ROttty ea e eaeaaraeaas 1-39

1B I BrANCH GIOUD 0ttt ittt et ettt e nme e e et ek e he e 1-45
164 Logic GroUD.\ u o ee s s es i caesasetaeestaa asas anes s aotaans 1-48
165StackOperations000eieioenin e 1-52
1.6.6 Machine Control Groupo it i it i e aaianas 1-M4
1.7 8085 Interrupt Structure and Operationcccccececiesicieseeeieaeinsecaans 1-55
LT TS OF I BITUDIS. . . .t e 1-55
1.7.2 Overall Intermupl Stuciurettt iraiaaaaseeas 1-56
1.72.1 Hardware Intermepls inBOBS.1-55

1.7225chware interruptsin 8085 L 1-80

221BusintefaceUntBIL).0c0oviinnvaneniniaianuinnne.. 2-2
222ExecutionUnit[EU]................0c0vuevenennainiainiaiiaiainennns 2-4
2.3 Register Organisation ... e e, 2-5
231 General Purpose Registers i iiiaiieiaiieeasiasssciansciasans 2-5
2.3.2 S00MENt RBGISIEIE\ttt ittt ettt iu e et i e i iaiiraiaes 2-5
233PointersandIndexRegistersc.000000iieiiiiiiain., 2-7
234FlagRegister, 2-T
2.4 BUS DPBIEHIONciis s iiieviiiiie s cessianeasssssnsssnssessssssresnmssmes s smmesesnneenrs 2-9
2.5 Memory Segmentation ... e e s 2-9

TR L B R R R R S R TR

3.1 Introduction ..., 3-1

3.4.4 String Data Transfer INSHUCHONS o0 ottt ieaaiaanss, 3-19

EsCeiRaneEs (ala | ransier |nSircIinns

3.5 Arithmetic and Logic INStructions.........coooviimiissineiissississ s crsneans 3-23

351 Addition e ieiiiiaiieiasiasseieieias 3-23

3.10 External Hardware Synchronization Instructionsccccceceee. 3-50

3171 Intermupt INSIUCHIONS ...t mnre s ram s innes 3-51
3.12 Assembler Directives 3-52
3.12.1 Summary of AssemblerDirectivesccocvaen.a.... 308
3.12.2 Variables, Suffixand Operalors.ottt 3-58
3.12.3 Accessing a Procedure and Data from another Assembly Module3-59
3.13 Assembly Language Programming..........cooocveniiniiinciiiiiiiciinie . 3-60
3.13.1 Assembly Language Programsee i ieieieiaiiaiiiiiiineieiai.. . 3-02
3.13.2 Assembly Language Programming TSovuev i inieiiieiennss 3-63
3133 Programmingwithan Assembler. iiiiiiiiiiiii... 3-65
3.13.3.1 Assembling Frocess 3 - 66
J1332UnkingProcess L L L L L L L L C e e e e 3-67

3.13.3.3 Debugging Process - 1 -1

3.14 Assembly Language Example ngrams .. 3-69
3A5Timings and Delays ... iisiiss s s isssssnssssssnies 3-72
3151 Timer Delay using NOP Instruction i ii e 3-72
3.15.2 Timer Delay using Counters T T STTTTry 3-72
3.15.3 Timer Delay using Nested LoopSooooieieiiniiniienaniaraenss. 3-T4
216 Data CONVersions ... s s = 19
3.16.1 Routines to Convert Binary o ASCI oo 3-T6
3.16.1.1 By AAM Instruction (Fornumberlessthan 1003, 3-76

3.16.1.2 By Sesies of Decimal Division. 3-79

J.16.2 Routineto Convert ASClitoBinary.c00vueeenneene....3-82

1 16 3 Rowdine tn Read Hexadecimal Data -85

3.16.4 Routine to Display Hexadecimal Data.cocviiiiiniincnnnnnn. .. 3=-90
3.16.5 Lookup Tables for Data Conversionsooovneniinnnnrninnnn. ... 8=-93

317 Procedures 3 - 96
117 1 Reentrant Procedure 1-98
3172 Recursive Procedure 3-08

3.18 Macro 3-99

3.19 Instruction Formats . 3-100

Review Questions 3 -107

¢ ST L B P

Program 1 : Read keyboard input and display it on monitorcc.ceees 4-1
Program 2 : Addition of two 32-bit numbers.............c.cccoviiiiiniiiisiciiicis 4-1
Program 3 : Addition of 3 x 3 MatriXccceeeiiiiisniinniesiessniss s e ssssssn s 4-2
Program 4 : Program to read a password and validate user 4-4
Program 5 : Program to calculate factorial of a numbercccccvvvnvieennnnns 4-5
Program 6 : Reverse the words in string............oooooiviiiiiiiiiiiceccic s 4-7
Program 7 : Search numbers, alphabets, special characters 4-9
Program 8 : Program to find whether siring is palindrome ornot 4-12
Program 9 : Program to display string in lowercasecccvvvveccienas 4-13
Program 10: Write an 8086 assembly language program (ALP) to add
array of N number stored in the memory.c.cecvveeveennne. 4-14
Program 11 : Write 8086 ALP to perform non-overlapped block transfer.4 - 18
Program 12: Write 8086 ALP to find and count negative numbers from
the array of signed numbers stored in memory.c....... 4-23
Program 13 : Convert BCD to HEX and HEX to BCD.........c.ooooiiiiiiiiiinnnns 4 - 26
Program 14 : Multiplication of two 8-bit numbers..........coeciiiiiiiiiiiiinnins 4 -32
Program 15 : Divide 4 digit BCD number by 2 digit BCD number............. 4 -38
Program 16 : To perform conversion of temperature from °F to °C. 4-41
Program 17 : String Operation........ ... ecenirsieiiscesseessasssres s e eeanas 4 -44
Program 18 : String Manipulations...........cceie e, 4-32
Program 19 : Sorting of AmTay ..o i siisesiesnsiesissseessrsesessssas 4-62
Program 20 : Program to search a given byte in the string............cccoen.. .8 - B6
Program 21 : Program to find LCM of two 16-bit unsigned numbers........ 4 - 67
Program 22 ;. Program to find HCF of two numbers........cocccvoimimmiiiiinisnins 4 -68
Program 23 : Program to find LCM of two given numbers.cceeceeenens 4-70
Chapter 5 : 8086 System Configuration SRR e syt (5534)
5.1 Introduction 5 - 1
5.2 Signal Description of BOBBc.coicimiiiisrinissnsssssssirsseeiarsnssssssss 5-1
5.2.1 Signals with Common FunclionsinBothModes 5-2
5.2.2 Signal Definitions (24 o) forMinfmumModeo 04

:.E.'I' - = = ‘.\,

5.2.3 Signal Definitions (24 to 31) for Maximum Mode. 5-4

5.3 Physical Memory OrganiSation ... 5-5
5.4 /O Addressing Capability ... e s 5-7
5.5 General 8086 System Bus Structure and Operation..........cccoovinnneneans 5-8
5.6 Minimum Mode B086 System and TimiNgs.........ccocceeninininiiniisisnnsnnnd = 10
5.6.1 Minimum Mode Conigurationu ettt 5-10
9.6.2 Minimum Mode BOBE Systemcuiueuiniiniiiininiiiianaianss 5-15
5.6.3 Bus Timings for Minimum Modeo.uiiueeiisiiiiiiaieiainienss 5-16
5.6.3.1 Timings for Readand Wiite Operaions5-18
5632HOLDResponse Sequance. s e e e e e e e 5-18

5.7 Maximum Mode 8086 System and Timings...........ccccoevvvrrvincvccnnnnn 5 = 18
5.7.1 Maximum Mode Coniguralion.c.oovirieeeininn... 5-18
5.7.2 Maximum Mode B0BE SYSIBM.uneerinesiiteeneeineinneeeennn 5-20
5.7.3Bus Timings for MasimumModeo i til., 5-22
5.7.3.1 Timings for Read and Write Operations _ _ . 5.22

5732 Timingsfor RQGT Signals0c0......52
5.8 Memory Structure and its RequUIremEntsccccecveeiieneeeiicrennennnnesd = 2

5.9 Basic Concepts in Memory Interfacing ... = 28

5.9.1 Address Decoding Techniquesoiiiiiiiniiiiiiiiraniaianaes 5-26
5.11 Wait State Generator Circuitcccooireiiinicnicrsiiie s 5-32

6.2 Pin DIBgram of B257ccococceeeuuemsssesssssssessssesssassssssssassnsssssssnsassssses 6-4
6.3 Block DIagram of 8257c.irscressssmmsssssesssssssssssaessessssssssessessssasess 6-6
6.4 Operating MOdes 0f B257ccmmrrrseemssssesssssesesessssssssseassssasseses 6-9
B.5 DMA CYCIESoooovoeresoeeesesseseseseseesesesssessssseeneses e ansssseesessaeesssssese oo 6-10
6.6 Interfacing 8257 in 1/O MapPed 1Oo.vververiersereseesesissessssesesenes 6-11
6.7 FEAtUres of B23TAcoorvveeerereeresssereeeeeseereeesee et 6-11
6.8 Pin DIAGrAM OF B2BTA.......oovoeooveeeeeiovvesesssseesseseesssessssassseessseens 6-13

6.9 Block Diagram of B23TAco o s 6-14

6.10 Transfer Types... SO STRRURORRI : R |

6.10.1 me-ln-lhnmr Tmmhr .. 6-20
o L T 6-21

6.12 Register Description............c.coeeiieiisiisiinseiniisssssssssscsss i sssss s nssans 6-22
B. 13 IRBITBCING .o oiniiciainsimassasssistissasbii st b s s s bbb b st b b 6-27

Review Questions » 6-28

7

7.6 8255 Programming and Operation.............coovcininnicnsisnicnnnicnicinnenne = 11
761 ProgamminginMode 0 ciiiiuiiiiiiiiiariiiiiaiicinaas -1

7.6.2 Programming in Mode 1 (Input / Output with Handshake) 7-13
7.6.3 Programming in Mode 2 (Strobes Bi-directional Bus V0) 7-18

7.7 Interfacing 8255 to 8086 in /O Mapped /O Mode.............cccvevvveennna T = 21
7.8 Interfacing 8255 to 8086 in Memory Mapped /Occccoiciinciisininsnnd | = 22
7.9 D/A Converter and their Interfacing with 8086................cccccccvvicivinnnne 7T-23
TOAICT0B ..ottt ettt ettt ettt 7-23
B 1 T 7-26
7.10 A/D Converters and their Interfacing with 8086 ... 7-34
TA0.1 ADCOB0S Familyocrrrinriinrrarnrensraraansanaaranseransnss 7T-34

7.12 Control of High Power Devices using 8255ccc.cccccvvvvevecnc T = 47
TA21 Integrated Cireuit Bufers. T-47
7122 Transistor Buffers 7-48
TA23 Isolation Gircuits0 1250

71231 ElectromagneticRelays T-50
T123250ldState Redarys T-51

7.13 Keyboard and Display Intedfacingcceecvvvvensivneiesiiieeniiieana e 7-51

.15 Centronics Printer Interface 7 -58
RV W BSOS ..o ieeiiie e see s eessiassssmsnessmsss s sesmsens sess s se s saessnns 7 -64

8.2 Interrupt Cycle of BOBB/BB............ooviiiiiiiiieieiiisiciisceesecesseessesssmsrnnns 8-2
8.2.1 External Si Hardware Interrupt)cc0viiiiiieiniinnuaninns, g-2
822 Bl INSuCtion iiieeiiiaceaeao.as g-2
8.2.3 Condition Produced by nstrucion0oioiein i, g-2

B.3 BOBE INEITUPE Ty DS .. cceeiiiisies e srsssmssssnsssssrsss essssn s s srassssnssnssss 8-4
8.3.1 Divide by Zero Intermupt (Type 0)o e 8-
8.3.2 Single Step Intemupt (TYPE 1) 8-
8.3.3 Non Maskable Intermupt (Type 2)o e 8-
8.3.4 Breakpoint Intemupt (TYPE 3) oot e §-
8.3.5 Overflow Intermupt (Typed). e i i cran e 8-
8.3.6 Software Interrupts P 8-
B.3.7 Maskable Intermupt (INTR)ottt e e it is st saaeaisias g -

8.4 INMEITUDPE PROTTIES.oiiviieieiiiseiesreesserensnseernssessssescesnneasssssssesnnssesineen

8.5 Expanding Interrupt Structure using PIC 8259cccceivinnriicnianininn 8-8
8.5 1 Features of 8259 B-9
852 Block Diagram ol B259A i it s i asaaaaeas B8
B53InterruptSequence, ... B=11

B.5.4 Priority Modes and Other Fealturescveeieecieenaeecean.... B=12
B.5.5 Programming the 8258A e e e e e B-15
BB B2GOA INBIRCING . . . oo sttt e e e e 8.22

B.E INtermuUPt EXAmMIPIE....c.ooviiiiiiiice it riasresseeeressse s snsas sram e sarseeseenrns 8-26
Review QUESHIONS ... s s e ss e n e TN 8-28

e e A A A L AN o LR e e e B e T

.

.

& Wh h h

e |

oo
1
oo

9.1 Character Input FUNCHIONS...........ccovivmrimieirniinrsssrescssssss s ne s nsmnas 9-3
9.2 Character Display FUNCHIONSc..cuiiiueiiiiiiieiieiesiiesmsnsersesnsenrssenssesas 9-7
9.3 File Cantrol Block Functi 9.8
9.4 Handle FUNCHONS ..o sis e iimsss s ssmsssams s ssamsbanens 9-15
9.5 Memory Management FUnclions ... iesnsssnsne g9-22
9.6 Display Functions Provided by ROMBIOS...........ccoovviieiee e, 9-25
9.7 Printer FUNCHONSoovviiiiiir e msss s ssssnessssssssssss sesmsnss sasessnnnes 9-28

el R e e e g e e | ot ™Y e A
[l e &

"F' ... Fl - I'. - 15 LT - B s
| er 1a @ PrEiqudEplfe= £, e o
bt millukei il i g P e il e e P I T e

I 1 e 10-1

1012 Half DUPIBX . .. oot 10-2
10 FUMDUPIBK. . . . oottt iiiiiiiiiiiaiieiii.s 10-2
1027 ission F I 10-2
1021 ASYNCAIONOUSo ieaeee e eaeaanscunniniaresrseniaraeieeae. W0=2
10.2.2Synchronous C e e e e 10-3
10.3 Interfacing ReqUINEMENES............cc.oveeriiiiiiiiniiiiisssnesessscess e 10-3
104 USART 8251 ETTTRTIITTRN PR J0-4
10.4.2 Pin Diagram of B251Al 10-5
104.3Block DIdgram i iiiiiiiieiiiii. 10-7
1044 8251A Controd Words i e 10-9

10.5 Seral Communication Protocol (RS232C)........cccccviiinnncinniniiinnne 10 = 17

10.6 Sample Programs of Serial Data Transfer..........cccccccceeenicianiieinnan 10-19
10.6.1 Program to Transmit One Character.cevieiincnacna e 10-19

10.6.2 Program to Receive One Character.cooviivninonenoans 10-20
106.3 Program to Transmit File., 10-20

10.7 Introduction to High-Speed Serial Communication

Standards, USBooooooiiiiniiiiiiiiiiniiiniiinniinniinn i, 10 - 22
10T AUSB FRAIIGSttt eis e e e e et e e 10-23
1072 Limitationof USB.0000ieveeneionernieaiiiiins, 10-25
10.7.3 Minimum PC Requirements for USB SUPPOrtouvveereeinneennnnn, 10- 26
10.7.4 USB "liered star" TopolOgY ooveuueeneeeiieeeeeeeeeeeenn.., 10-27
10.7.5 Terminology used N USE e i e 10-28
10.76Host's Functions Pk remaesanemmnanr s Ay 10-30
10.7.7 Peripheral Funclions iiiiiiieriirinnnnnarinneerannns 10-31
10.78 USB Communicalionvuerniennsiananrerneaneraneneannes 10-32
10.7T9Elements of Transfer. it i 10-32
10.7.10 Data Transler Types i iae i e nia e eannns 10-34
107 1T USE Controlber.t it it i e caciaen i ans 10-36

REVIEW QBSOSooveoeeeeieeiieiieiiie e eieeieesessssssessesssssssassnnssmessmssssssmssmmnns 10 - 37

M362Register B.« ¢ 0 i e e e e e e e e e e e e
11.3.8.3 Program Status Word (Flag Register) 1.
11364 Slackand StackPointer M-

M3650ataPointer (DPTR) o o oo uu.. 11
1M1366ProgramCounter 1
11.36.7 Special FuncionRegisters 11

11.4 Memory Organization in B0S57ccovvirieeeriies e v e cae e 11-15

11.5 Input/Output Pins, Ports and Circuits..........cocccvmeumevseeineessseesneseens 11-16
11.6 External Data Memory and Program Memoryccccoovvrninnn, 11-19
11.6.1 External Program Memorny. .. _........oove i iaiianns, 11-19
11.6.2 External Data Memony. e -
11.6.3 Important Points to Remember in Accessing External Memory_. ... 11-23
11.7 Timers and COUMBIS ..o isrscssssssnssssssnmsssssssmssnssennsans 11-24
11.7.1 Timer/Counter Confrod Logicttt e i 11-24
M72TimerDand Timer 1.0 41-25
118 Seral POrt ...t s st e see e an e s mans mnmnns 11-29
11.8.1 Operating Modes for Serial Port0coiviininn... 11-30
11.8.2 Serial Port Conlrol Register. i i enrnranes 11-3
11.9 Interrupt StrUCIUrecoccieciieiiieiis e svas csemvas eascsassaas e assnsaaseeas .11-33
11.9.1 Priovity Lewvel Structure i e e 11-34
11.9.2 Extemal Intermupls e 11-36
11.9.3 Single-Step OPeration.cueiieie et e, 11-36
11.10 Interfacing 8255 for /O EXpansionccccciiiiisnsmissiiinsinesscnsnnas 11 -37
Review QUESHIONScccciriiisie e esvessess s se s sassses s srrs s ane s eran ns s s sen nns 11-38

8036 Programs

i kB L L i L — [d - &%)
Progrom - Find the averoge of two numbers.......cciiiisimsimmmimsisssrrsismsrsissnsnarassssesnd = %)

Pragram - Find the maximum number in the amay ...y [3 - 69
Program - Search a number imthe array ..o (3 - 70)
Progrom - Find sum of numbers in the 0mayc.cocommimimein s resisssafd * 70
Program - Saparale even and odd numbers in the aray.......oinn i e, A3 -71)
Program - Read keyboard input and display it on moniforcccceieniieienisrssrarssiannees {4 -11
Frogram - Addition of two 32-hil nUMBESot s amsm s sssnssnasess (4 - 1)
Prowgroon: - Addifion . of 3 w3 meleie oo s i R e i e S 4-2
Frogram - Read a possword ond volidale User...........cccimemsisinsmminissnnasassssssssssns {4 - 4)
Progrom - Colculote lactoral of 8 numbar ..o s en spssssssassasase {4 - 5)
Progrom - Reverse the words in string.... ..o i i iessmessassinsssisss savrasass cadannase 4 -7)

Program - Search numbers, alphobets, special characters............cccocevvvvcvcievcivinecvesinne (4 = 9)

Program -Find wheathar shing is palindrame or nof..........cccoocveeiiiiimcmcnnicseeieiisiesesseneec i = 12)

Program - To disploy sheing in JOWBREaEE................coiiiimrmiisimnrasessinnsossissstnssnsisnasssins A4 - 13)
Program - Wrile an B086 assembly language program [ALP} 1o add array of N number

e e R R e e i L it LU reed = 14)
Program - Write 8086 ALP 1o perform non-overlopped block transfer.................cc........ (4 - 18}
Progrom - Write 80856 ALP to find and count negative numbers from the arroy of signed

MUMDES SHONBT N WMBTIONY. ...coeiicuniiinsinsnnsissss s sns naanas st ama s sk s ko sk g4 - 23)
Program - Convert BCD 1o HEX and HEX to BCDcocsmimiisisinnnsssinsssssnsassnsssssasasanss (4 - 26)
Progrom - Multiplication of two B-bit numbers.........c.ocmmimmimrsressmmmsmressssssas s 4 - 32)
F'_rngn;:m - Divide 4 drﬂil BCD number by 2 dilg'ﬂ BUD number.........ocoviiemmcissinssniinssanses (4 - 38)
Program - To perform conversion of temperoture from F 1o Cooniiiiiiieciiiciie e (4 - 41)
Program - SIing Openaions it siisrere e rmssssresaasaressrs sarasrasmsnsssaras (4 - 44)
Prowicm: - Siving MoripoboRons ..o cousiie i i i i S (4 - 52)
Progeosn = Sorling o8 Analy:. i i i i e iive e B s e wa s (4 - 62)
Program - Search a given byle in the stringooocviiiieicr s e s esms s (4 - 66)
Progrom - Find LCM of two 16-bit unsigned numbers ..o (4 - 67)
Progrom - Find HCF of bwo numbers. ... seisssunssbissssss ias se s sascanma (4 - 68)

Program - Find LCM of two given numbers,ccociiniviiiniinnins s st i (4 - 70)

An Overview of 8085

1.1 8085 Microprocessor

In this chapter we will see features, pin diagram, architecture, register structure, bus
organisation, iming and control and instruction set of 8085 microprocessor.

The features of BI85 microprocessor are as given below !

1.

It is an B-bit microprocessor ie. it can accept, process, or provide 3-bit data
simultaneously.

. It operates on a single +5V power supply connected at V- power supply ground

is connected to V.

3. It operates on clock cyele with 50% duty eycle.

It has on chip clock generator. This internal clock generator requires tuned circuit
like LC, RC or crystal. The internal clock generator divides oscillator frequency by
2 and generates clock signal, which can be used for synchronizing external devices.

It can operate with a 3 MHz clock frequency. The 8085A-2 version can operate al
the maximum frequency of 5 MHz.

6. It has 16 address lines, hence it can access (2') 64 Kbytes of memory.

7. It provides 8 bit 1/0 addresses o access (2°) 256 1/0O ports.
8. In 8085, the lower B8-bit address bus (Ap- A7) and data bus (Dp-D;) are

10.

multiplexed to reduce number of external pins. But due to this, external hardware
(latch) is required to separate address lines and data lines.

- It supports 74 instructions with the following ndl:lmﬁ.:i;ing modes :

a) Immediate b) Register ¢} Direct d) Indirect) Implied

The Arithmetic Logic Unit (ALU) of 8085 performs :

a) 8 bit binary addition with or without carry

b) 16 bit binary addition. ¢) 2 digit BCD addition.

d) 8-bit binary subtraction with or without borrow

e) B-bit logical AND, OR, EX-OR, complement (NOT), and bit shift operations,

(1-1)

Microprocessors and Interfacing 1-2 An Overview of BDBS

11.

12.

14.

15.

16.

17.

18.

It has B-bit accumulator, flag register, instruction register, six 8-bit general purpose
registers (B, C, D, E, H and L) and two 16-bit registers (SI" and PC). Getting the
operand from the general purpose registers is more faster than from memory.
Hence skilled programmers always prefer general purpose registers to store
program variables than memory.

It provides five hardware interrupts : TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR.
It has serial 1/0 control which allows serial communication.

it provides control signals (I0/M, RD, WR) to control the bus cycles, and hence
external bus controller is not required.

The external hardware (another microprocessor or equivalent master) can detect
which machine cycle microprocessor is executing using status signals (10/M, 5,
5;). This feature is very useful when more than one processors are using common
sysbem resources (memory and 1/0 devices).

It has a mechanism by which it is possible to increase its interrupt handling
capacity.

The 8085 has an ability to share system bus with Direct Memory Access controller.

This feature allows to transfer large amount of data from 1/0 device to memory or
from memory to /O device with high speeds.

It can be used to implement three chip microcomputer with supporting 1/0
devices like IC 8155 and IC 8355.

1.2 Architecture of 8085
Fig. 1.1 (See Fig. on next page) shows the architecture of 8085.

It consists of various functioma bloo ks as listed below :

Registers

Arithmetic and Logic Unit

Instruction decoder and machine cycle encoder
Address buffer

Address/Data buffer
Incrementer / Decrementer Address Latch
Interrupt control

Serial 1/0 control

Timing and control circuitry.

Microprocessors and Interfacing

1-3

An Overview of B85S

RET 6.5

IMNTA TRAFP
INTR {HET 5.5 | RST 7.5 J

S0

|

S0

1 Internupt control | | Senal VO controd]
@ B Ba ivlernal daia bus ﬁ
| |
i U g 3 1
Accurmulaior 'Tl}ﬁ‘;r:rw Flag regisior l"l;ﬁl!nr?n L | VWV Reg | £ Reg
T I | EH’H‘E . Fisg
U D Heg | E Rag
H Hﬂ L Eﬂ
ritmaig s bruchn ni Stack rcndoad
ot S b = =
tALU] rmakchiirie
- — T || [e
OWWER {_"' sV Address |alch
2w PPLY | e l’L
cx Timing and Control J\/ \l WY
N W
':'-"‘ t'.:l:IHTFl!I:ll.. STATUS DMA RESET TS,'}:T" m:::;rum;
|:u=_.n|:w i oy HLDA RESET OUT M‘:‘f:_;::u n:'tf“::_g“
bus
Fig. 1.1 Architecture of 8085
1.2.1 Register Structure
- The Fig. 12 shows the register
Ergﬁgrw structure of B085. The shaded portion of
W Reg Z Reg this register model is :T‘llled pmgrallmmtr'f
model of 85085 It includes six 8-bit
AT Flag Reg registers- (B, C, D, E, H and L) one
B Reg C Reg accumulator, one flag register and two
. : >
 DReg E Reg l-fl-].;llt registers {.‘,‘_:1 and PC). All these
: regisbers are accesible to programmer and
. 'HReg LH’? hence they are included in the
. Stack pointer (5P} programmer’s model. The remaining
registers - temporary, W and Z are not
ﬁwm :
P accessible to the programmers; they are

Fig. 1.2 Register structure of 8085

used by microprocessor for internal,

intermediate operations.

Microprocessors and Interfacing 1-4 An Overview of B085

The BOBS registers are classified as
1. General Purpose Registers

2. Temporary Registers

a) Tl.'m}'lnmr:u.-‘ data rg-giﬁlvr b W and £ registers

3. Special Purpose Registers

a) Accumulator b} Flag registers ¢} Instruction register

4, Sixteen Bit Registers
a) I'rogram Counter (PC) b)) Stack Pointer (5F)

1. General Purpose Registers :

B. C, D E, H, and L are 8-bit general purpose registers can be used as a separate 8-bit
registers or as 16-bit register pairs, BC, DE, and HL. When used in register pair mode, the
high order byte resides in the first register (i.e. in B when BC is used as a register pair)
and the low order b}-’tl‘ in the second (i.e. in C when BC is used as a register pair).

HL pair also functions as a data pointer or memory pointer. These are also called
scratchpad registers, as user can store data in them. To store and read data from these
registers bus access is not required, it is an internal operation. Thus it provides an efficient
way to store intermediate results and use them when required. The efficient programmer
prefers to use these registers to store intermediate results than the memory locations which
require bus access and hence more time to perform the operation.

2. Temporary Registers

a) Temporary Data Register : The ALU has bwo inputs. One input is supplied by the
accumulator and other from temporary data register. The programmer can not access this
temporary data register. However, it is internally used for execution of most of the
arithmetic and logical instructions.

For example : ADD B is the instruction in the arithmetic group of instructions which
adds the contents of register A and register B and stores result in register A. The addition
operation is performed by ALU. The ALU takes inputs from register A and temporary
data register. The contents of register B are transferred to temporary data register for
applying second input to the ALLL

b) W and Z Registers : W and Z registers are temporary registers. These registers are
used to hold 8bit data during execution of some instructions. These registers are not
available for programmer, since 8085 uses them internally.

Use of W and Z registers :

The CALL instruction is used to transfer program control to a subprogram or
subroutine. This instruction pushes the current PC contents onto the stack and loads the
given address into the PC. The given address is temporarily stored in the W and Z
registers and placed on the bus for the fetch cycle. Thus the program control is transferred

Microprocessors and Interfacing 1-5 An Overview of B085

to the address given in the instruction. XCHG instruchion g-m;h.;mgeﬁ the contents of H with
D and L with E. At the time of exchange W and Z registers are used for temporary
storage of data.

3. Special Purpose Registers :

a) Register A (Accumulator) : It is a tri-state eight bit register. It is extensively used in
arithmetic, logic, load, and store operations, as well as in, input/output (1/0) operations.
Muost of the times the result of arithmetic and logical operations is stored in the register A.
Hence it is also identified as aceumulator.

bl Flag Register : It is an 8-bit register, in which five of the bits carry significant
information in the form of flags : 5 (Sign flag), Z (Zero flag), AC (Auxiliary carry flag), I’
(Parity flag), and CY (carry flag), as shown in Fig. 1.3.
D Dg Dy Dy Dy D, Dy DOy
5 L X AC X P X cY

Fig. 1.3 Flag register
S-Sign flag : After the execution of arithmetic or logical operations, if bit [} of the
result is 1, the sign flag iz set. In a given byte if D; is 1, the number will be viewed as
negative number. If D, is {0, the number will be considered as positive number.
Z-Zero flag : The zero flag sets if the result of operation in ALU is zero and flag resets
if result is non zero. The zero Hag is also set if a certain register content becomes zero
following an increment or decrement operation of that register.

AC-Auxiliary Carry flag : This flag is set if there is an overflow out of bit 3 ie. , carry
from lower nibble to higher nibble (D5 bit to Dy bit). This flag is used for BCD operations
and it is not available for the programmer.

P-Parity flag : Parity is defined by the number of ones present in the accumulator.
After an arithmetic or logical operation if the result has an even number of ones, i.e. even
parity, the flag is set. If the parity is odd, flag is reset.

CY-Carry flag : This flag is set if there is an overflow oul of bit 7. The carry flag also
serves as a borrow flag for subtraction. In both the examples shown below, the carry flag
is set

ADDITICN SUBTRACTION
9B H 1001 101 #IH 1000 1007
+ T5H + 011101 = ABH « 1010 1011

Cany [1]10H [7]0001 0000 Borrow [1JDEH [1]1101 1110

¢) Instruction Register : In a typical processor operation, the processor first fetches the
opcode of instruction from memory (ie. it places an address on the address bus and
memory responds by placing the data stored at the specihied address on the data bus). The
CPU stores this opcode in a register called the instruction register. This opcode is further
sent to the instruction decoder to select one of the 256 alternatives.

Microprocessors and Interfacing 1-6 An Overview of B085

4. Sixteen Bit Registers

a) Program Counter (PC) : Program is a sequence of instructions. As mentioned earlier,
microprocessor fetches these instructions from the memory and executes them sequentially.
The program counter is a special purpose register which, at a given time, stores the
address of the next instruction to be fetched. Program Counter acts as a pointer to the next
instruction. How processor increments program counter depends on the nature of the
instruction; for one byte instruction it increments program counter by one, for two byte
instruction it increments program counter by two and for three byte instruction it
increments program counter by three such that program counter always points to the
address of the next instruction.

In case of JUMFP and CALL instructions, address followed by JUMP and CALL
instructions is placed in the program counter. The processor then fetches the next
instruchion from the new address specified by JUMP or CALL instruction. In conditional
JUMP and conditional CALL instructions, if the condition is not satisfied, the processor
inctements program counter by three so that it points the instruction followed by
conditional JUMP or CALL instruction; otherwise processor fetches the next instruction
from the new address specified by [UMF or CALL instruction.

b) Stack Pointer (SP) : The stack iz a reserved area of the memaory in the RAM where
temporary information may be stored. A 16-bit stack pointer is used to hold the address of
the most recent stack entry.

1.2.2 Arithmetic Logic Unit (ALU)

The B085's ALU »erforms arithmetic and logical functions on eight bit variables. The
arithmetic unit performs bitwise fundamental arithmetic operations such as addition and
subtraction. The logic unit pf.-rfurm:i logical operations such as complement, AND, OR and
EX-OR, as well as rotate and clear. The ALU also looks after the branching decisions.

1.2.3 Instruction Decoder

As mentioned earlier, the processor first fetches the opcode of instruction from
memory and stores this opcode in the instruction register. It is then sent to the instruction
decoder. The instruction decoder decodes it and accordingly gives the timing and control
signals which control the register, the data buffers, ALU and external peripheral signals
{explained in later sections) depending on the nature of the instruction.

The B85 executes seven different types of machine cycles. It gives the information
about which machine cycle s currently execuling in the encoded form on the 5, 5, and
10/ M lines. This task is done by machine cyele encoder.

1.2.4 Address Buffer

This is an B-bil unidirectional buffer. It is used lo drive external high order address
bus (A;s-Agl It is also used to tri-state the high order address bus under certain conditions
such as reset, hold, halt, and when address lines are not in use

Microprocessors and Interfacing 1-7 An Overview of B85

1.2.5 Address/Data Buffer

This is an 8-bit bi-directional buffer. It is used to drive multiplexed address/data bus,
ie. low order address bus (A,-Ag) and data bus (D--D,). It is also used to tri-state the
multiplexed address/data bus under certain conditions such as reset, hold, halt and when
the bus is not in use.

The address and data buffers are used to drive external address and data buses
respectively. Due to these buffers the address and data buses can be tri-stated when they
are not in use,

1.2.6 Incrementer/Decrementer Address Latch

This 16-bit register is used to increment or decrement the contents of program counter
or stack pointer as a part of execution of instructions related to them.

1.2.7 Interrupt Control

I'he processor fetches, decodes and executes instructions in a sequence. Sometimes it is
necessary o have processor the automatically execute one of a collection of special
roulines whenever special condifion exists within a program or the microcomputer system.
The most important thing is that, after execution of the special routine, the program
control must be transferred to the program which processor was executing before the
occurrence of the special condition. T'.e occurrence of this special condition is referred as
interrupt. The interrupt control block has hive interrupt inputs RST 5.5, R5T 6.5, RST 7.5,
TRAFP and INTR and one acknowledge signal INTA.

1.2.8 Serial VO Control

In situations like, data transmission over long distance and communication with
cassette tapes or a CRT terminal, it is necessary to transmit data bit by bit to reduce the
cost of cabling. In serial communication one bit is transferred at a time over a single line.
The 8085's serial 1/0 control provides two lines, SOD and SID for serial communication.
The serial output data (SOD) line is used to send data serially and serial input data (5I1D)
line is used to receive data serially.

1.2.9 Timing and Control Circuitry

The control circuitry in the processor B085 is responsible for all the operations. The
control circuitry and hence the operations in 8085 are synchronized with the help of clock
signal. Along with the control of fetching and decoding operations and generating
appropriate signals for instruction execution, control circuitry also generates signals
required to interface external devices to the processor, 8085,

Microprocessors and Interfacing 1

An Overview of B085

1.3 Pin Definitions of 8085

Fig. i4 {a) and (b) show S085 pin configuration and functional pin diagram of 8085
respectively. The signals of BI85 can be classified into seven groups according to their

functions.

3V GND
[1 |z Tm Tzn

[~ aol |ver Serial 55 | My X3 Ve Vs
=[] [Jnowo o 5204
reseTout[|3 3| |HiDa
son[|4 a7] | eukioun eae
sin[_Is wl | feserin o BST7S T
s I
HET?EET Sljm:il" EF.
ratTes[_ |o sl s, T
reTss[o = I % ET i:
WR[Jao »|_]ww RESET N 38
WA | . sl Jae BOB5A
Al 11z e I L WE WA 11
ap,[113 aal a,, E% HLDA 38 30 _
AD; [14 -of I LY £ Sm—
a0, s . 3 s comwo
AD*|: [5 :l-ﬁ.“. -iﬁdﬂ'lﬁ et
aDs[Iz zal Ay, ELR
ag[|1a 23] |
A0:[1o 22 |ag
Vas [|20 a| | EI ::11
RESET OUT CLK OUT

Fig. 1.4 (a) Pin configuration
a) Power supply and frequency signals.
b) Data bus and address bus
<) Control bus
d) Interrupt signals
e) Serial 1/0 signals
f) DMA signals
g) Reset signals

Fig. 1.4 (b) Functional pin diagram

Microprocessors and Interfacing 1-9 An Overview of BOBS

1.3.1 Power Supply and Frequency Signals
i} ¥ec © It requires a single +5 V power supply.
i) Vgg : Ground reference.

iii) X; and X, : A tuned circuit like LC, RC or crystal is connected at these two pins.
The internal clock generator divides oscillator frequency by 2, therefore, to operate a
system at 3 MHz, the crystal of tuned circuit must have a frequency of 6 MHz.

iv) CLK OUT : This signal is used as a system clock for other devices. Its frequency is
half the oscillator frequency.

1.3.2 Data Bus and Address Bus

A) AD; to AD, : The 8 bit data bus (D, - I);) is multiplexed with the lower half (A, -
A-) of the 16 bit address bus, During first part of the machine cyele (T,), lower 8bits of
memory address or 1/0) address appear on the bus. During remaining part of the machine
cycle (T; and T,) these lines are used as a bi-directional data bus.

B) Ay to A : The upper half of the 16 bit address appears on the address lines Ay to
Aje. These lines are exclusively used for the most significant 8 bits of the 16 bit address
lines.

1.3.3 Control and Status Signals

A) ALE (Address Latch Enable) : We know that AD; to AD; lines are mulliplexed and
the lower half of address (A, - A;) is available only during T, of the machine cycle. This
lower half of address is also necessary during T, and T, of machine cycle to access specific
location in memory or /O port. This means that the lower half of an address must be
latched in T, of the machine cycle, so that it is available throughout the machine cycle. The
latching of lower half of an address bus is done by using external latch and ALE signal
from 8085,

B) RD and WR : These signals are basically used to control the direction of the data
flow between processor and memory or 1/0 device/port. A low on RD indicates that the
data must be read from the selected memory location or I/0 port via data bus. A low on
WR indicates that ihe data must be written into the selected memory location or [/0 port
via data bus.

C) IO/, S, and S, : 10/M indicates whether /0 operation or memory operation is
being carried out. 5, and 5, indicate the type of machine cycle in progress.

D) READY : It is used by the microprocessor to sense whether a peripheral is ready or
not for data transfer. If not, the processor waits. It is thus used to synchronize slower
peripherals to the microprocessor.

Microprocessors and Interfacing 1-10 An Overview of B085

1.3.4 Interrupt Signals

The B085 has five hardware interrupt signals : RST 55, RST 6.5, RST 7.5, TRAP and
INTR. The microprocessor recognizes interrupt requests on these lines at the end of the
current instruction execution.

The INTA (Interrupt Acknowledge) signal is used to indicate that the processor has
acknowledged an INTR interrupt.

1.3.5 Serial VO Signals

A) SID (Serial /P Data) : This input signal is used to accept serial data bit by bit from
the external device.

E) 50D (Serial O/F Data) : This is an output signal which enables the transmission of
serial data bit by bit to the external device.

1.3.6 DMA Signal

A) HOLD : This signal indicates that another master is requesting for the use of
address bus, data bus and control bus.

B) HLDA : This active high signal is used to acknowledge HOLD request.

1.3.7 Reset Signals
A) RESET IN : A low on this pin
1) Sets the program counter to zero (0000H).
2) Resets the interrupt enable and HLDA flip-flops.
3) Tri-states the data bus, address bus and control bus. (Note : Only during RESET is
active).
4) Affects the contents of processor’s internal registers randomly.

On reset, the PC sets to 0000H which causes the 8085 to execute the first instruction
from address 0000H. For proper reset operation reset signal must be held low for at least 3
clock cycles. The power-on reset circuit can be used to ensure execution of first instruction
from address 0000H.

B) RESET OUT : This active high signal indicates that processor is being reset. This
signal is synchronized to the processor clock and it can be used to reset other devices
connected in the system.

1.4 Bus Organisation

In this section we are going to see how we can use various buses of BI85, how to
demultiplex address and data bus, how to generate control signals, how to provide clock
and reset signals to B85 and so on.

Microprocessors and Interfacing 1-11 An Overview of 8085

1.4.1 Clock Circuits

The 8085 has on chip clock generator. Fig. 1.5 shows the internal block diagram of the
on chip clock generator. The internal clock generator requires tuned circuit like LC, RC or
crystal, or external clock source as an input to generate the clock. The internal T-flip Aop
divides the frequency by 2. Hence the operating frequency of the 8085 is always half of the
oscillator frequency.

—— Cik Dut

‘[VEEHE W)
T] #

Xy D‘ Clk
O

Fig. 1.5 Block diagram of built-in clock generator

LC Tuned Circuit :

It = a LC resonant tank crcuit. The
resonant frequency for this circuit is given by

LE © f = I
" 28 L(Cey +Cin)
Xz

Where C,, is the internal capacitance and
it is normally 15 pF. The output f of
1. i 1 Y P tput frequency
Fig. 1.8 LC clrcult this circuit has 10% variations. To minimize
the variations in the output frequency, it is recommended to have C., at least twice that
of C,, i.e. 30 pF.

RC Tuned Circuit : Fig. 1.7 shows the RC tuned

circuit. The output frequency of this circuit is also »
not exactly stable. But this circuit has an advantage !
that its component cost is less. c R

Crystal Oscillator Circuit : Fig. 1.8 shows the I X,
crystal oscillator circuit. It is the most stable circuit. =

The 20 pF capacitor in the circuit is connected to
assure oscillator start-up at the correct frequency. Fig. 1.7 RC Circuit

Microprocessors and Interfacing 1-12 An Overview of 8085

+5 W
J_f %4 Pull-up
resistance
Crystal]
External %
HE chock 1
BOBS
c Mon-connactad X
I (NC) 2
Fig. 1.8 Crystal clock circuit Fig. 1.9 External frequency source

External Clock :

Fig. 1.9 shows how to drive clock input of BU85 with external frequency source. Here
external clock is applied at X; input and X; input is kept open.

1.4.2 Demultiplexing AD.-AD,

We know that AD, to AD; lines are multiplexed and the lower half of address
(A, - A;) is available only during T, of the machine cycle. This lower half of address is also
necessary during T, and T, of machine cycle to access specific location in memory or 1/0
port. This means that the lower half of an address bus must be latched in T, of the
machine cycle, so that it is available throughout the machine cycle. The latching of lower
half of an address is done by using external latch and ALE signal from 8085. The Fig. 1.10
shows the hardware connection for latching the lower half of an address. The IC 7415373
is an 8-bit latch, having 8 D flip-flops. The input is transferred to the output only when
clock is high. This clock signal is driven by ALE signal from 8085. The ALE signal is
activated only during T,, so input is transferred to the output only during T, i.c. address
{Ap - A;) on the AD,, to AD; multiplexed bus. In the remaining part of the machine cycle,
ALE signal is disabled so output of the latch (A, - A;) remains unchanged. To latch lower
half of an address, in each machine cycle, the BO85 gives ALE signal high during T, of
every machine cycle.

1.4.3 Reset Circuit

On reset, the PC sets to 0000H which causes the 8085 to execute the first instruction
from address 0000H. For proper reset operation reset signal must be held low for at least 3
clock cycles. The power-on reset circuit can be used to ensure execution of first instruction
from address 0000H. Fig. 1.11 shows the power-on reset circuit with typical R, C values.
(Mote : R, C values may vary due to power supply ramp up time).

Upon power-up, RESET [N must remain low for at least 10 ms after minimum Vec has
been reached, in the circuit shown in Fig. 1.11. Upon power up or key press, the RESET
IN goes low and slowly rises to +5V, providing sufficient time for the processor to resel
the system. The diode is connected to discharg: the capacitor immediately when power
supply is switched OFF.

Microprocessors and Interfacing 1-13 An Overview of B085

IC 74L5373
oy 1 5 oo t—*
AB; CLK A2
AD, . ' L,
AD, ’ A,
ADs ’ —
AD; —e Ay
6| oT
Enabbe Outpat control
ALE =
Dy
DI
Ly
Dy
Dy
Dy
Dg
0;

Fig. 1.10 Latching circuit
3V

Fig. 1.11 Power on reset

After RESET, 8085 loads 0000H in PC register and clears the INTE flag. Before going to
execute interrupt service routine, it is necessary to setup certain parameters, mquinxl bo
execute interrupt service routine. To avoid interrupt to occur before completion of these
initial requirements, after power on or reset, INTE flip-flop is cleared to disable interrupts.
It can be enabled by El instruction after initial settings.

Microprocessors and Interfacing 1-14 An Overview of 8085

As we know that, after power up or reset B0B5 fetches its first instruction from 0000H
address, and it has to be the first instruction from monitor program. Therefore EPROM
consisting of monitor program must be located from address (WKOH in any B085

MICTOPTOCESSOT System.

1.4.4 Generation of Control Signals
The B85S microprocessor provides RD and WR signals to inibate read or write cycle.
Because these signals are used both for reading/writing memory and for reading/writing

an input device, it is necessary to generabte separate read and write signals for memory
and [/0 devices.

The 8085 provides I0/M signal to indicate whether the initiated cycle is for 1/0O device
or for memory device. Using 10/M signal along with RD and WR, it is possible to
generate separate four control signals :

MEMR (Memory Read) : To read data from memory.
MEMW (Memory Write) : To write data in memory.

10R (1/O Read) : To read data from /0 device.
Iow (1O Write) : To write data in 1/0 device.

Fig. 1.12 shows the circuit which generates MEMR, MEMW, 10R and 1OW signals.

a0as
1o

Fig. 1.12 Generation of MEMR, MEMW, IOR and IOW signals

We know that for OR gate, when both the inputs are low then only output is low.
Table 1.1 shows the truth table used to generate MEME, MEMW, IOR and IOW signals.
The signal 10/M | goes low for memory operation. This signal is logically ORed vﬂth RD
and WR to get MEMR and MEMW signals. When both RD and 10/M signals go
MEMR signal goes low, Similarly, when both WR and 10/M signals go low, MEMW
signal goes low. To generate IOR and T1OW mg;mls for 1/O operation, I0/M signal is first
inverted and then logically ORed with RD and WR signals.

Microprocessors and Interfacing 1-15 An Overview of 8085

10/M RD WR __MEMR MEMW | JOR__ | 10W__
RD + [O/M [WH+ IO/M | RD + 10/M | WR + 10/M
i]] Li] Condition never exisis, becauss RD and WR signals does nol go
low simultanaaushy
0] 1 0 1 1 1
0 1 L1 1 0 1 1
0] 1 1 1 i 1 1
1 0 0 Condition never exists, because RD and WR signals does nol go
low simultaneously
1 0 1 1 1 0 1
1 1 a 1 1 1 a
1 1 1 1 1 1 1
Table 1.1

Same truth table can be i]'nFI'[E."I!'I'iE"I.'Iti!d using 3:8 decoder as shown in Fig. 1.13.

Y

G Vee LY
Y
MEMR
Y
. J:8 MEMYWY
WHR & Decoder ¥
RO B ¥y
— (rALS138) Y
[wh T c TR
Yo _ ow
b |
E‘l

1

Fig. 1.13 Generation of control signals using 3:8 decoder

1.4.5 Bus Drivers

Typically, the 8085 buses can source 400 pA and sink 2 mA of current, ie. it can drive
only one TTL load. Therefore, it is necessary to increase driving capacity of the B085 buses.
Bus drivers, buffers are used to increase the driving capacity of the buses.

Microprocessors and Interfacing 1-16 An Overview of B0B5

Unidirectional Buffers : - .

As we know, the address bus 1s 21 Ve P [il
unidhirechonal, B-bit unidirectional buffer, L‘L__“
7415244 is used to buffer higher address 4 .l’f?‘.t:]
bus. The Fig. 1.14 shows the logic o -
diagram of 7405244, It consists of eight 5 h’“l 7 e
non-inverting buffers with tri-state N O vl
outputs. Each one can sink 24 mA and g
source 15 mA of current. The ¢ bubfers . e ekl
are divided into two groups. The o A
enabling and disabling of these groups e PN Ml
are controlled by 1G and 2G lines. sl &Lﬂ' 2|,
Bi-directional Buffer : "“".__.T

To increase the driving capacity of g s [~ Tals
data bus, bi-direconal buffer is used. D -

Fig. 1.15 shows the logic diagram of the 0 8
bi-directional buffer 7405245, also called
an octal bus transceivers. It consists of
sixteen non-inverting buffers, eight for
each direction, with tri-state output. The direction of data flow is controlled by the pin
DIR. When DIR is high, data flows from the A bus to the B bus; when it is low, data
flows from B to A. The active low enable signal and the DIR signal are ANDed to activate
the bus lines. Each buffer in this device can sink 24 mA and source 15 mA of current.

20 T4L5245 10
=

Fig. 1.14 Logic diagram of the T4L5244

il
Voo GMD
2l A B
! [:} 1]18 Function table
3 =
Az Ba |47 o
4 8 I controd peration
iy £ BT ol T
5 B
M o L L B Datato A Bus
6| A Be | 14 L H A Datato B Bus
H X Isolation
7| 2s Bg |13
sl A By 42 H=High level L=Low level X=Irelevant
B
Ag o a Ba |11
1 19
Dhrection Emnable
conirol

Fig. 1.15 Logic diagram of the T4L5245

Microprocessors and Interfacing 1-17 An Overview of B085

1.4.6 Typical Configuration
Fig. 1.16 shows schematic of the 8085 microprocessor demultiplexed address bus and
control signals.

n5§ > 2

3 3l g:ﬁ

S8l

Fig. 1.16 Typical 8085 configuration

Microprocessors and Interfacing 1-18 An Overview of B085

It also shows clock and reset circuits. Interrupt lines which are not in use are
grounded. This is necessary because floating interrupt line may cause false riggering of
interrupt. Similarly, since the DMA controller is not used, HOLD line is also grounded. As
we know READY signal is used to synchronize slow peripherals with the microprocessor.
When it is low, microprocessor enters in the wait state and when it is high, it indicates
that the memory or peripheral is ready to send or receive data. Here, the READY signal is
tied high to prevent the microprocessor from entering the wait state. ALE signal is
connected to the clock input of the latch, to latch the low order address in T, of the
machine cycle. To control the direction of the bi-directional buffer 7415245, RD signal from
B85 is connected to DIR input of the bi-directional buffer. Thus, when RD signal is low,
DIR is low and data flows from memory or 1/0 device to the microprocessor, performing
read operation. When RD signal is high, DIR is high and data flows from microprocessor
to memory or [/O device performing write operation

1.5 Timing and "Control

During normal operation, the microprocessor sequentially fetches, decodes and
execules one instruction after another until a halt instruction (HLT) is executed. The
fetching, decoding and execution of a single instruction constihules an instruction cycle,
which consists of one to five read or write operations between processor and memory or
input/output devices. Each memory or 1/0 operation requires a particular time period,
called machine cycle. In other words, o move byte of data in or out of the
microprocessor, a machine cycle is required. Each machine cycle consists of 3 to & clock
periods/cycles, referred to as T-states. Therefore we can say that, one instruction cycle
consists of one to five machine cycles and one machine cycle consists of three to six
T-states i.e. three to six clock periods, as shown in the Fig. 1.17.

Instruction cycle
J
| | |
Machine IE!'.E“E. 1 Maching ﬂj‘C'E - Lo Machine cy'da 5
| i
T- siala 1 T_g|g|1.=_-2 LR BT T T T — T—letalE-

Fig. 1.17 Relation between instruction cycle, machine cycle and T-state

There are seven different types of machine cycles in the B085A. Three status signals
I0/M, 5, and 5, identify each type as shown in Table 1.2. These signals are generated at
the beginning of each machine cycle and remained valid for the duration of the cycle.

Microprocessors and Interfacing 1-19 An Overview of BD85

Machine Cycia Status Control
| oM | s, | s, | RO | WR | iNTA

Opcode Fetch 0 1 1 0 1 1
Memaory Haad 0 1 i o 1 1
Memory Write i i 1 1 0 1
0 Read 1 1 1] 0 1 1

I Write 1 0 1 1 Q 1
INTR Acknowladge 1 1 1 1 1 0
Bus Idie 0 0 0 1 1 1

Table 1.2 8085 machine cycles

Representation of Signals
Before going to see the timing diagram, we will see the signals and their
representation used in the timing diagrams.

1. Clock Signal :

The 8085 divides the clock frequency provided at Xy and X; inputs by 2, which is
called operating frequency. All the operations within the 8085 are synchronized with this
operating frequency. Therefore in the timing diagram operating frequency clock is shown
on the top and then the signals are shown with reference to operating frequency clock.
Ideally, the clock signal should be square wave with zero rise ime and fall time, as shown
in the figure. But in practice, we don’t get zero rise time and fall time. Therefore the clock
and other signals are always shown with finite rise and fall times. Fig. 1.18 shows the

practical way of representing clock signal.

=—T-gtate —= H—T-SIH.E ::l' L-—T_.-: |-._T
1 Clock cycle :
(a) Ideal (b} Practical
Fig. 1.18 Clock signal representation
Single Signal :

Single signal is represented by a line. It may have status either logic 0 or logic 1 or
tri-state. The change in the state of the signal takes finite time and hence the state change
of signal is represented with finite rise time and fall time, as shown in the Fig. 1.19.

Microprocessors and Interfacing 1-20 An Overview of 8085

Logic 1 Logic
(K

g
. {C
» | Tri-stale Y

Logic 0§} ! Logic 0

T, —= b

Fig. 1.19 Single signal representation

Group of Signals :

Group of signals is also called a bus eg. address bus and data bus. To avoid
complications in the timing diagram these signal are grouped and shown in the torm of
block as shown in Fig. 1.20.

—X X ¢ X

x I . 1
\—Eme change _/ = Valid utala—-_-'! T stals e

Fig. 1.20 Group of signals representation

In the group representation individual state is not considered, but the group state is
considered. Change in state of single signal changes the state of group. It is represented by
the cross as shown the Fig. 1.20. The tri-stabe condition of the group signals is shown by
dotted lines. Two straight lines represent valid state/stable state.

In microprocessor systems, activation of signal/signals depends on the state of other
signal /signals. Such situations are shown in the timing diagrams with the help of specific
symbols. There are four possibilities :

Activation of a signal with the change in state of other signal.

Activation of a signal with the change in state of other signals.

Activation of signals with the change in state of other signal.

Activation of signals with the change in state of other signals.

Fig. 1.21 shows the representation of dependence of the signal/signals, in the timing
diagram.

Microprocessors and Interfacing . 1-21 An Overview of B085

Oither signal

Activated \—_/_
signal

(a) Activation of signal with the (b) Activation of signal with the
change in state of other signal change in state of other signal
(c) Activation of a signal with the (d) Activation of signals with the
change in state of other signals change in state of other signals
Fig. 1.21
Signal Timings

In B085 microprocessor, signals are activated at specific instant for specific ime period.
Once we understand this, it is very easy to draw timing diagrams. The following sechon
explains when the signals are activated and for what period they remain in active state.

ALE (Address Latch Enable) :

This signal is active high signal. It is activated in the beginning of the T, state of each
machine cycle, except bus idle machine cycle, and it remains active in the T, state as
shown in the Fig. 1.22.

Microprocessors and Interfacing 1-22 N An Overview of B085

Maching cycla 1 - Maching cycle 2 —————&

T\ _/__/_\T,/ L/
|

A

ﬁ

Fig. 1.22 ALE activation and its period
A -A; (Lower byte address) :

The lower byte of address is available on the multiplexed address/data bus (AD-AD;)
during T, state of each machine cycle, except bus idle machine cycle, as shown in Fig. 1.23.

Machine cycle 1 - Maching cycle 2 —————

U__] e/ _/_\'4 \/

i

Fig. 1.23 Lower address on the multiplexed bus
DD, (Data Bus) :

The data from memory or 1/0 device and from microprocessor to memory or 1/O
device is transferred during T, and T,-states. It is important to note that in read machine
cycle, data will appear on the data bus during the later part of the T,—state, as shown in

the Fig. 1.24, whereas in write cycle data will appear on the data bus at the beginning of
the T,-state, as shown in the Fig. 1.24.

atatial Watial

L O I -{ Addrass X Data

.

(a) Fig. 1.24 Data bus (b)

Microprocessors and Interfacing =~ 1-23 An Overview of B085

To read data from memory or 1/O device it is necessary to select memory or 1/0
device. After selection, device will put the data from selected location on the data bus.
This action needs finite time. This time is referred to as “access time’ . In case of write
cycle, data is available in the registers of the microprocessor and it can put that data on
the data bus with zero access time.

A;~A,; (Higher byte address) :
The higher byte of address is available on the Ag-A s bus during T,, T, and T, - states
of each machine cycle, except bus idle machine cycle, as shown in Fig. 1.25.

-‘\n{_\ul -/ -'\n! \ J ol) L
N — } ___________ { -)

Fig. 1.25 Higher byte address on AB-A15

Maching cycle 1 1 kachine cyca 2—-—-‘-

!1 T, r‘ \ T, r‘ h T, 'J b‘ T, " l‘ T, Ty Ty

i i

! |

i

+(oM =0,5,=1,5=1 x o =0,58,=05 =1 }
1 I
i i :

' Opcode feich :
Fig. 1.26 Status signals

Memory resd ————————

These signals are called status signals. They decide the type of machine cycle to be
executed. They are activated at the beginning of T,-state of each machine cycle and remain
active till the end of the machine cycle.

RD and WR :

These signals decide the direction of the data transfer. When RD signal is active, data

is transmitted from memory or /0 device to the microprocessor, and when WR signal is

active, data is transmitted from microprocessor to the memory or 1/0 device. Both signals
are nover active at a time.

As we know data transfer in 8085 takes place during T, and T, these signals are
activated during T, and T,, as shown in the Fig. 1.27.

Microprocessors and Interfacing 1-24 An Overview of 8085

R Rvaral

3

%

Fig. 1.27 RD and WR signals

1.5.1 B085 Machine Cycles and their Timings
Ihe 8065 has seven machine cycles, These are :
1. Opcode Fetch

Memory Read

Memory Write

1/0 Read

/O Write

Interrupt Acknowledge

Bus ldle

Mol oa W

1. Opcode Fetch Cycle :

The hrst machine cycle of every instruction is opcode tetch cycle in which the 8085
finds the nature of the instruction to be executed. In this machine cycle, processor places
the contents of the Program Counter on the address lines, and through the read process,
reads the opcode of the instruction. Fig. 1.28 (a) (5ee Fig. on next page) shows How of data
{opcode) from memory to the microprocessor and Fig. 1.28 (b) shows the timing diagram
for opeode fetch machine cycle. The length of this cycle is not fixed. It varies from 4T
states to 6T states as per the instruction. The following section describes the opcode fetch
cvehe in step by slep manner,

Step 1 : (State T,) In T, state, the 8085 places the contents of program counter on the
address bus. The high-order byte of the PC is placed on the Ag-A; lines. The low-order
byvte of the PC is placed on the AD, - AD, lines which stays on only during T,. Thus
microprocessor activates ALE (Address Latch Enable) which is used to latch the low-order
byte of the address in external latch before it disappears.

In T,, 8085 also sends status signals 10/M, S,, and 5, 10/M specifies whether it is a
memory or 1/0 operation, 5, status specifies whether it is read/write operation; 5; and 5,
together indicates read, write, opcode fetch, machine cycle operation, or whether it is in
HALT state. In opcode fetch machine cycle status signals are : 10/M = 0, 5 =15=1

8z’ Bid
81242 supysew Y8y epoadp (g) Jossedoudsojw o) Aowew woly moy) (epoado) ejeq (e)

Oy SSOUPPE SBIENPU| - - sOf) BIEQ SAREQU] -—

SN Eeg .IQ _.._.___n___m_-”“

An Overview of B0BS

1

Microprocessors and Interfacing

U 22 3
8}
' s ﬁ-r.,[&
uneepoado | [1e'giels'D=pion smEsg
N Wrol

___ ,___ fowspy_
3)[4y | “
/ \ _/ | o>] |

LIET e - pue
ssouppe Kows | " aw Buwy [
(mio_-(TmomX] o W]
v : i :

“ ()
-__I.__Un_nm::uﬂ E55UppE Aowew sepio yBiy x“ iy “ " !
i UGS m
\WAAWA WA WA\ W T
W10 m “
I HEH“ i
“ sapsibal |
"L L i L “ 2| 8 WSS SUI m
e yaie) epoadg -l “ @ .r._v m
! I
m gty — h— L"

BIED - == }]

Microprocessors and Interfacing - 1-26 An Overview of 8085

! =

Step 2 : (State T;) In T, low-order address disappears from the AD, - AD, lines.
(However A; - A; remain available as they were latched during T,). In T,, 8085 sends RD
signal low to enable the addressed memory location. The memory device then places the
contents of addressed memory location on the data bus (AD, - AD).

Step 3 : (State T;) During T, 8085 loads the data from the data bus in its Instruction

Register and raises RD to high which disables the memory device,

Step 4 : (State T,) In T, microprocessor decodes the opcode, and on the basis of the
instruchion received, it decides whether to enter state T; or to enter state T, of the next
machine cycle. One byte instructions those operate on eight bit data (8 bit operand) are
executed in T, '

For example : MOV A, B, ANA D, ADD B, INR L, DCR C, RAL and many more.

Note : For one byte instructions which operate on eight bit data, data is always available
in the internal memory of BOBS i.e. registers.

Step 5 : (State T, and T)

State T, and T, when entered, are used for internal microprocessor operations
required by the instruction. During Ty and T, 8085 performs stack write, internal 16 bit,
and conditional return operations depending upon the type of instruction. Ome byte

instructions those operate on sixteen bit data (16 bit operand) are executed in T; and T,
For example DCX H, PCHL, SPHL, INX H, etc.

2. Memory Read Cycle :

The B085 executes the memory read cycle to read the contents of B/W memory or
ROM. The length of this machine cycle is 3-T states (T, - T3). In this machine cycle,
processor places the address on the address lines from the stack pointer, general purpose
register pair or program counter, and through the read process, reads the data from the
addressed memory location. Fig. 1.29 (a) (See Fig. on next page) shows flow of data from
memory to the microprocessor and Fig. 1.29 (b) shows the Hming diagram for memory
read machine cycle. Memory read machine cycle is similar to the opcode fetch machine
cycle. However, they use only states T, to T, and the status signal values (I0/M = 0,
5, = 1, 5, = 0) appropriate for memory read machine cycle are issued in T,. The following
section describes the memory read machine cycle in step by step manner.

Step 1 : (State T,) In T, state, microprocessor places the address on the address lines
from stack pointer, general purpose register pair or program counter and activates ALE
signal in order to latch low-order byte of address.

During T,, B0BS sends status signals : I0/M = 0,5, = 1, and §;, = 0 for memory read
machine cyele.

An Overview of 8085

. 1-27

Microprocessors and Interfacing

s62'1 "Bl
a2k auysew peas Kiowae (q) Jossasosdouapw o) Aiowaw woly moy eeq (e)
MOY SSEIPPE SEIEDIPU| - - ‘MOY E1ED SSNEDPU] —-—

— U [o
. |
o= L=t 0=N/ 0l s Wi ol By | |5t
B Roowsay _
----AbEmE woy EEV.-A.. Oyt — Ly XH Sav - ‘av Ogr| | g
I ud : pue
/|\l . I B
%av| [‘av! ﬁ
ssIppE Lowap XH By - Sy Y [| __!
i ai
|\|/|\|/|\|/ : m|ermli
| dS
W10 ! = I_._ .3
b - 1
| T4
£ z I 1] i Ml
1 1 1 “ al
!
i
i

RN R RN N W NN U NN N N NS EECEE NN W N RN NN N WM N M MW T mm mm mm

-28 An Overview of B085

Microprocessors and Interfacing

oc°) “Bid
8joha suryorw myum owaey (q) Kowsw o} sossascsdossnu moy ejeq (e)

#OY) SSBIPDE SIEIPU| -~ ‘MOY EJEP SHIBIIPU| =—

—t
snq E1EQ
Bl
LAY
|\||/u " 4
[1HI I-._.._T
! 51
t=Pgo=ts0=p/0l VIEE_ i
Aowawy
ndowoyeeg X f-bqvﬁuﬂq-ha_q o rqu
i [T
Y] [l amae puUE
\/|" |
| I
L]

4 av i fav
i i
SSEIPPE AUoLBKY |XH_ iy — Fhy wedf=======< luuﬁ
i 1 al

]
I
i
]
] .U.-l-
W13) = 1| H
I
]
3 a
E 4 b Hl
f—————— B OB —] " ﬁ
I
¥
| = =

e o o W ER M R R S o e e

Microprocessors and Interfacing 1-29 An Overview of 8085

Step 2 : (State T,) - In T, 8085 sends RD signal low to enable the addressed memory
location. The memory device then places the contents of addressed memory location on the
data bus {AD, -AD-).

Step 3 : (State T;) During T, 8085 loads the data from the data bus into specified
register (F, A, B, C, D, E, H, and L) and raises RD to high which disables the memory
device.

3. Memory Write Cycle

The B085 executes the memory write cycle to store the data into data memory or stack
memory. The length of this machine cycle is 3T states (T, - T;). In this machine cycle,
processor places the address on the address lines from the stack pointer or general
purpose register pair and through the write process, stores the data into the addressed
memory locabion. Fig. 130 (5ee Fig. on I's-n.w'iuu!-i pﬂgt;} shows the timing diagram for
memory write machine cycle. The memory write timing diagram is similar to the memory
read timing diagram, except that instead of ﬁ,_ﬁ signal goes low during T, and T,. The
status signals tor memory write cycle are : I0O/M = 0, 5, = 0, 5, = 1. The lollowing section
describes the memory write machine cycle in step by step manner.

Step 1 : (State T;) In T, state, the 8085 places the address on the address lines from
stack pointer or general purpose register pair and activates ALE signal in order to latch
low-order byte of address. During T,, 8085 sends status signals :

IO/M =0,5 =0and 5 = 1 for memory write machire cycle.

Step 2 : (State T,) In T, 8085 places data on the data bus and sends WR signal low for
writing into the addressed memory location.

Step 3 : (State T,) During T, WR signal goes high, which disables the memory device
and terminates the write operation.

4, 5. /O Read and /O Write Cycles

The 1/0 read and 1/0 write machine cycles are similar to the memory read and
memory write machine cycles, respectively, except that the I0/M signal is high for 170
read and [/O write machine cycles. High 10/M signal indicates that it is an [/0 operation.
Fig. 1.31 (b) and Fig. 1.32 (b) show the timing diagrams for 1/0 read and [/0 write cycles,

respertiwly.

6. Interrupt Acknowledge Cycle

In response to INTR signal, 8085 executes interrupt acknowledge machine cycle to read
an instruction from the external device. Theoretically, the external device can place any
instruction on the data bus in response to INTA. However, only RST and CALL, save the
PC contents (return address) before transferring control to the interrupt service routine.
The next sections explain interrupt acknowledge cycles for RST and CALL instructions.

-30

1

Microprocessors and Interfacing

An Overview of 8085

8j242 Aowew peas o) (a)

O g W /Ol

oy

Sav - ‘av

by — Sy

C 3

1D

Le Big

J088820sd0osow o) aapaep Induj wody ol eyeq ()

MO} SSSIPDE SEIEMNPU| - -

‘MOY BED SBIEIPU| -

=

f

peal
o]] |

qeeG ..IE
Oy- Ly
F— s
P
emsmermseneramanenensa-aamt
| o=
T = mm_._q Eﬁ
|
n_n,q___hn_... m :
o
3d
a5 _-ﬁ
1| .
B ul
> | 8

" R B R ER B RS BN NS E O S N m

An Overview of 8085

-3

1

Microprocessors and Interfacing

ze') "Gy
8j9ko suiysew ayum o (q) sajaep ndino o) Jossesosdosapu wosy moy eeg (e)
MO SSBIDPE SIEIPU] === 'MOY EJED SSIEMNPU| -
—

M B B
Oyl Ol

= Y| somep

1="8'0="g'L =} Ol X Ug ''g ‘W /O HO nding

[By Sty ”

—— nawwoyeen ¥ wevo/l X Igw - Lav

i
I
i
L m ERl Buguiii]
I
I
i
I

PPY O/ X By - Sy

WA WA\WAE

n.—- n._. _..—.

p—————————— UM O] —————]

o o o S

e O e i i

Microprocessors and Interfacing 1-32 An Overview of 8085

Interrupt acknowledge cycle for RST instruction

Fig. 1.33 shows the timing diagram of the interrupt acknowledge machine cycle and
execution of RST instruction. The interrupt acknowledge cycle is similar to the opcode
fetch cycle, with two excephions.

1. The INTA signal is activated instead of the RD signal.

2. The status lines (I0/M, Sy and S,) are 111 instead of 011.

During interrupt acknowledge machine cycle (M,), the R5T is decoded, which initiates
1 byvte CALL instruction to the specific vector location. The machine cycles M, and M, are

memory write cycles that store the contents of the program counter on the stack, and then
a new instruction cycle begins.

Hegtlan Instruclion

T To | Ta [Ta | Ts [Ta | Ty | T2 | T3 | Ty T, 1Ty

A YAVAVAVAVAVAVAVA VA WA WA WA W

- |__ _
Agh P, BPIH BFa) r4
AD-AD {RST == === === ==H{ze L O OAFCH) Wisr5 LY D OAPCLY!
ALE_|M\ \ \ ~

INTR l\‘:_____

INTA
IOW,S, .Su.fl (.| 0.1 B0.1])
RD

WH - - /T

Fig. 1.33 Restart instruction

Interrupt acknowledge cycle for CALL instruction

Fig. 1.34 shows the timing diagram of the interrupt acknowledge machine cycle and
execution of a CALL instruction. For CALL instruction, it is necessary to fetch the two
bytes of the CALL address through two additional interrupt acknowledge machine cycles
(M, and M, in the 3.21). The machine cycles M, and M; are memory write cycles that store
the contents of the program counter on the stack, and then a new instruction cycle begins.

An Overview of 8085

-33

1

UORINIISU| [4O UORINISKE PUE 8242 supydew yIN| jo wesbep Bupuy) ygo B4

g ..w.a.ﬂ_ﬁﬂr.ﬁ.u._m.?ﬁ_n_ -

ha
i
n
><
o1
B
=
S
=<
Wi
or]
k=
.

C
éﬁx

E_.wﬁ ED g)

4
g
;
f1
g
g

SBFU
VAVAVAVAVAVAVAVAVAVAVAVA VA VA VAV NAR...

Microprocessors and Interfacing

There are few situations where the machine cycles are neither Read nor Write. These

7. Bus idle Cycle
situabions are :

Microprocessors and Interfacing 1-34 An Overview of 8085

1. For execution of DAL instruction (this instruction adds the contents of a specified
register pair to the contents of HL register pair) ten T states are required. This means that
after execution of opeode fetch machine cycle, DAD instruction requires 6 extra T-states to
add 16 bit contents of a specified register pair to the contents of HL register pair. These
exbra T-states which are divided inbo two machine r:,rcle.gi do not involve any memaory or
1/0 operation. These machine cycles are called BUS IDLE machine cycles. Fig. 1.35 shows
Bus Idle Machine Cycle for DAD instruction.

s————— Instruction cycle of DAD instruction ————— e
Opcode Fetch Bus Idle
Ty [To [Ta [To [Ty [T2 [Ta [Te [Ts [T
cLock wu’uux_ruw_r}_rw
ALE [\
|
Py gty :'_l_' Aughy i Un ied X Unspac%ad
mr'lﬁ'n@ "'n""-}—
IS, 5, 1 =0, 8.=1,8.=1 I M =0,5,=0, 5,=0
F
J
RD L_.r"’
wR |/
NTA f

Fig. 1.35 Timing diagram for DAD instruction

In the case of DAD, these Bus ldle cycles are similar to memory read cycles, except R
and ALE signals are not activated.

2. During internal opcode generations, for TRAP and RST interrupts, B085 executes Bus
Idle Machine Cycles. Fig. 1.36 shows the Bus Idle Machine Cycle for TRAP. In response to
TRAP interrupt, 8085 enters into a Bus Idle Machine Cycle during which it invokes restart
instruction, stores the contents of PC onto the stack and places 0024H (Vector address of
TRAP) onto the program counter.

Microprocessors and Interfacing 1-35 An Overview of 8085

T |

LR
etk \ /DS WS WS NN NS
TRAP m;"ﬂ - i

IV

5,8y

Ag-fg [PETH =] il
N i

- |
INTA

RO LS

WR

READY _}_h’h /

Fig. 1.36 Bus idle machine cycle for trap

The number of machine cycles required to fetch complete instruction depends on the
instruction type :

l. OUne byte 2. Two byte or 3. Three byte

One byte instruction doesn’t require any additional machine cycle. Two byte
instruction requires one additional memory read machine cycle, whereas three byte
instruction requires two additional memory read machine cycles.

The number of machine cycles required to execute the instruction depends on the
particular instruction. The total number of machine cycles required varies from one to five,
It is possible that memory read and memory write machine cycles occur more than onee in
a single instruction cycle. The following examples illustrate the timing diagrams and
machine cycles used for few BOB5 instructions.

1.5.2 Concept of Wait States

In some applications, speed of memory system and [/0 system are not compatible
with the microprocessor’s timings. This means that they take longer time to read/write
data. In such situations, the microprocessor has to confirm whether a peripheral is ready to

Microprocessors and Interfacing 1-35 An Overview of B085

transfer data or not. If READY pin is high, the peripheral is ready otherwise 8085 enters
wail state.

Fig. 1.37 shows the timing diagram for memory read machine cycle with and without
wait state,

{ MR OR OR MR OR I10R
. Ty Ty Ty Ty Ty Towur Ty
ax NSNS NSNS NS NSNS
(o7 7]
g & Xm-ﬂ:-:l-:ummmﬂﬂhs,n,s,,zcx PR = 0 [MF) OR 100R), 5, = 1, B, = 0 K
fe 5]

A |
{

'u'u Aos : X

ouT ouT M]
a0y -AD; || K A~ y{ D0y K) = Dy - Dy }'{I
ae |\

N = .

]
N. S The

S

READY

Fig. 1.37 Read machine cycle with and without wait state

Wait states continue to be inserted as long as READY is low. After the wait state, 8085
continues with T; of the machine cycle. During a wait state the contents of the address
bus, the data bus, and the control bus are all held constant.

The wait state then gives an addressed memory or 1/0 port an extra clock cycle time
to output valid data on the data bus. This feafure allows to use cheaper memory or /0
devices that have longer access times.

Microprocessors and Interfacing 1-37 An Overview of 8085

1.6 Instruction Set of 8085

1.6.1 Data Transfer Group

1. MVI r, data (8)

Example :
MVI B. 60H
2. MVI M, data (8)

Example :
MVI M, 40H

3. MOV rd, rs

MOV B, A

4. MOV M, rs

Example :
MOV M, B

5 MOVrd M

Example :
MOV C, M

This instruction directly loads a specified register with an 8-bit data
given within the instruction. The register r is an B-bit general
purpose register such as A, B, C, D. E. H and L.

; This instruction will load 60H directly into the B register.

This instruction directly loads an B-bit data given within the
instruction into a memory location. The memory location is
specified by the contents of HL register pair.

H = 20H and L = 50H

; This instruction will load 40H into

; memory whose address is 2050H.

This instruction copies data from the source register into destination
register. The rs and rd are general purpose registers such as A, B, C,
D, E, H and L. The contents of the source register remain
unchanged after execution of the instruction.

A = 20H

; This instruction will copy the contents
: of register A (20H) into register B.

This instruction copies data from the source register into memory
location pointed by the HL register pair. The rs is an 8-bit general
purpose register such as A, B, C, D, E. H and L.

If HL = 2050H, B = 30H.

; This instruction will copy the contents

; of B register (30H) into the memory location
; whose address is specified by HL (2050H).

This instruction copies data from memory location whose address is
specified by HL register pair into destination register. The contents
of the memory location remain unchanged. The rd is an 8-bit
general purpose register such as A, B, C, D, E, H and L.

HL = 2050H, contents at 2050H memory location = 40H
: This instruction will copy the contents

; of memory location pointed by HL

: register pair (40H) into the C register.

Microprocessors and Interfacing 1-38 An Overview of B0B5

6. LXI rp, data (16) This instruction loads immediate 16 st data specitied within the

Example :
i. LXI B, 1020H

T. STA addr

Example :
5TA 2000H

8. LDA addr

Example :

LDA 2000H

9. SHLD addr

Example :
SHLD 2500H

10. LHLD addr

instruction into register pair or stack pointer. The rp is 16-bit
register pair such as BC, DE, HL or 16-bit stack pointer.

; This instruction will load 10H into B

; register and 20H into C register.

This instruction stores the contents of A register into the memory
location whose address is directly specified within the instruction.
The contents of A register remain unchanged.

A = 50H

; This instruction will store the

; comtents of A register (S0H) to

: memory location 2000H.

This instruction copies the contents of the memory location whose
address is given within the instrucion into the accumulator. The
contents of the memory location remain unchanged.

(2000H) = 30H

; This instruction will copy the

; combents of memaory location

; 2000H i.e. data 30H into the

; A register

This instruction stores the contents of L register in the memory
location given within the instruction and contents of H register at
address next to it. This instruction is used to store the contents of H

and L registers directly into the memory. The contents of the H and
L registers remain unchanged.

H = 30H, L = 60H

; This instruction will copy

; the contents of L register at

; address 2500H and the contents

; of H register at address 2501H.

This instruction copies the contents of the memory location given

within the instruction into the L register and the contenis of the
next memory location into the H register.

Microprocessors and Interfacing 1-39 An Overview of 8085

Example : (2500H) = 30H, (2501H) = &0H

LHLD 2500H ; This instruction will copy the
s pontents of MEMOryY location 2500H
;e data 30H into the L register and
; the contents at memory location
; 2501H i.e. data 60H into the H register.

11. STAX rp This instruction copies the contents of accumulator into the memory

location whose address 15 specified by the specified register pair.
The rp is BC or DE register pair. This regisler pair is used as a
memory pointer. The contents of the accumulator remain

unchanged.
Example : BC = 1020H, A = 50H
STAX B ; This instruction will copy the

; comtents of A register (50H) to the
; memory location specified
; by BC register pair (1020H).
12. LDAX rp This instruction copies the contents of memory location whose

address is specified by the register pair into the accumulator. The rp
is BC or DE register pair. The register pair is used as a memory

pointer.
Example : DE = 2030H, (2030H) = BOH
LDAX D ; This instruction will copy the

; contents of memory location
; specified by DE register pair
; (2030H) into the accumulator.

13. XCHG This instruction exchanges the contents of the register H with that
of D and of L with that of E.

Example DE = 2040H, HL = 7080H

L1

XCHG : This instruction will load the data into registers as follows
;H=20H, L =40H, D =70H and E = 80

1.6.2 Arithmetic Group

1. ADDr This instruction adds the contents of the specified register to the
contents of accumulator and stores result in the accumulator. The r
is 8-bit general purpose register such as A, B, C, I, E, H and L.

Microprocessors and Interfacing 1-40 An Overview of B0B5

Example :
ADD C

2. ADDM

Example :

ADD M

3. ADI data (8)
Example :

AN 70H

4. ADCr

Example :
ADC C

5. ADC M

A =20H, C = 30H.

: This instruction will add the contents of C register, i.e. data
: 30H to the contents of accumulator, i.e. data 20H and it will

; store the result 50H in the accumulator.

This instruction adds the contents of the memory location pointed
by HL register pair to the contents of accumulator and stores result
in the accumulator. The HL register pair is used as a memory
pointer. This instruction affects all flags.

A = 20H, HL = 2050H,

: (2050H) = 10H

; This instruction will add the contents of memory location
; pointed by HL register pair, 2050H i.e. data 10H to the

; contents of accumulator ie. data 20H and it will store the
; result, 30H in the accumulator.

This instruction adds the 8 bit data given within the instruction to
the contents of accumulator and stores the result in the accumulator.

A = 50H

: This instruction will add 70H to the contents of the
; accumulator (50H) and it will store the result in the
; accumulator (COH).

This instruction adds the contents of specified register to the
contents of accumulator with carry. This means, if the carry flag is
set by some previous operation, it adds 1 and the contents of the
specified register to the contents of accumulator, else it adds the
contents of the specified register only. The r is B-bit general purpose
register such as A, B, C, D, E, H and L.

Carry flag = 1, A = 50H, C = 20H

; This instruction will add the contents of C (20H) register to

; the contents of accumulator (50H) with carry (1) and

; it will store result, 71H (50H + 20H + 1 = 71H) in the

; accumulator

This instruction adds the contents of memory location pointed by
HL register pair to the contents of accumulator with carry and

stores the result in the accumulator. HL register pair is used as a
memory pointer.

Microprocessors and Interfacing 1-41 An Overview of B0B5

Example :
ADC M

6. ACI data (8)

Example :
DAD D

8. SUBr

Example :
SUB B

9. S5UB M

Example :

Carry flag = 1, HL = 2050H, A = 20H, (2050H) = 30H.

: This instruction will add the contents of memory location
; pointed by HL register pair, 2050H, i.e. data 30H to the

; contents of accumulator, i.e. data 20H with carry flag (1).

¢+ It will store the result (30 + 20 + 1 = 51H) in the accumulator.

This instruction adds B bit data given within the instruction to the
contents of accumulator with carry and stores result in the
accumuilator.

A = 30H, Carry flag = 1

; This instruction will add 20H to the contents of accumulator,

; Le. data 30H with carry (1) and stores the resull,

; 51H (30 + 20 + 1 = 51H) in the accumulator.

This instruction adds the contents of the specified register pair to
the contents of the HL register pair and stores the result in the HL
register pair. The rp is 16-bil register pair such as BC, DE, HL or
stack pointer. Only higher order register is to be specified for
register pair within the instruction.

DE = 1020H, HL = 2050H

; This instruction will add the contents of DE register pair,

: 1020H to the contents of HL register pair, 2050H.

: It will store the result, 3070H in the HL register pair.

This instruction subtracts the contents of the specified register from
the contents of the accumulator and stores the result in the
accumulator. The register r is B-bit general purpose register such as
A, B C,DEHand L

A = 50H, B = 30H.

: This instruction will subtract the contents of B register (30H)

; from the contents of accumulator (50H) and stores the result

; (20H) in the accumulator.

This instruction subtracts the contents of the memory location
pointed by HL register pair from the contents of accumulator and

stores the result in the accumulator. The HL register pair is uséd as
a memory pointer.

HL = 1020H, A = 50H, (1020H) = 10H

Microprocessors and Interfacing 1-42

An Overview of 8085

SUB M

10. SUI data (8)

Example :
SUT 20H

11.SBB r

SBBE C

12. SBE M

Example :
SBB M

13. 5Bl data (B)

; This instructicn will subtract the contents of memory location

; pointed by HL register pair, 1020H, i.e. data 10H from the

; contents accumulator, i.e. data 50H and stores the result

: (40H) in accumulator.

This instruction subtracts an 8 bit data given within the instruction

from the contents of the accumulator and stores the result in the

accumulator.

A = 40H,

; This instruction will subtract 20H from the contents of
; accumulator (40H). It will store the result (20H) in the

; accumulator.

This instruction subtracts the specified register contents and borrow
Hlag from the accumulator contents. This means, if the carry flag
(borrow for subtraction) is set by some previous operation, it
subtracts 1 and the contents of the specified register from the
comtents of accumulator, else it subtracts the contents of the
specified register only. The register r is 8-bit register such as A, B,
C, D, E, Hand L.

Carry flag = 1, € = 20H, A = 40H

; This instruction will subtract the contents of C register (20H)
; and carry flag (1) from the contents of accumulator (40H).

; It wall store the result (40H - 20H = 1 = 1FH) in the

; accumulator.

This instruction subtracts the contents of memory location pointed
by HL register pair from the contents of accumulator and borrow
flag and stores the result in the accumulator.

Carry flag = 1, HL = 2050H, A = 50H, (2050H) = 10H.

; This instruction will subtract the contents of memory location

; pointed by HL register pair, 2050H, i.e. data 10H and borrow
; (Carry flag = 1) from the contents of accumulator (50H) and

; stores the result 3FH in the accumulator (50 - 10 - 1 = 3F).
This instruction subtracts 8 bit data given within the instruction and

borrow flag from the contents of accumulator and stores the result
in the accumulator.

Microprocessors and Interfacing 1-43 An Overview of B0BS

Example : Carry flag = 1, A = 50H

SBI 20H : This instruction will subtract 20H and the carry flag (1)
; from the contents of the accumulator (50H). Tt will store
; the result (50H - 20H - 1 = 2FH) in the accumulator.

14. DAA This instruction adjusts accumulator to packed BCD (Binary Coded
Decimal) after adding two BCD numbers.

Example :
If, A =0011 1001 = 39 BCD
and C = 0001 0010 = 12 BCD then

ADD C : Gives A = 0100 1011 = 4BH
DaA ; adds 0110 because 1011 > 9, A = 0101 0001 = 51
; BCD

If A =1001 0110 = 9% BCD
and [= 0000 0111 = 07 BCD then
ADD D : Gives A = 1001 1101 = 9DH
DAA ; adds 0110 because 1101 > 9,
: A = 1010 0011 = A3H
; 1010 > 9 so0 adds 0110 0000
; A = 0000 0011 = 03 BCD, CF = 1.
15.INR r This instruction increments the contents of specified register by 1.

The result is stored in the same register. The register r is B-bit
general purpose register such as A, B, C, D, E, H and L.

Example : B =10H

INR B ; This instruction will increment the contents of B register
; (10H) by one and stores the result (10 + 1 = 11H]) in the
; same i.e. B register.

16. INR M This instruction increments the contents of memory location pointed
by HL register pair by 1. The result is stored at the same memory
location. The HL register pair is used as a memory pointer.

Example : HL = 2050H, (2050H) = 30H

INEM ; This instruction will increment the contents of
; memory location pointed by HL register pair, 2050H, ie.

Microprocessors and Interfacing 1-44 An Overview of B085

17. INX rp

Example :
INX H

18. DCR r

Example :
DCR E

1. DCR M

DCRE M

20. DCX rp

Example :
DCX D

: data 30H by one. It will store the result (30 + 1 = 31H) at the
; same place.

This instruction increments the contents of register pair by one. The
result is stored in the same register pair. The rp is register pair such
as BC, DE, HL or stack pointer (SP).

HL = 10FFH

; This instruction will increment the contents of HL register

; pair (10FFH) by one. It will store the result

; (10FF + 1 = 1100H) in the same i.e. HL register pair.

This instruction decrements the contents of the specified register by
one. It stores the result in the same register. The register r is 8-bit
general purpose register such as A, B, C, D, E, H and L.

E = 20H

; This instruction will decrement the contents of E register

: (20H) by one. It will store the result (20 — 1 = 1FH) in the

; same, i.e. E register.

This instruction decrements the contents of memory location
pointed by HL register pair by 1. The HL register pair is used as a
memory pointer. The result is stored in the same memory location.
HL = 2050H, (2050H) = 21H

; This instruction will decrement the contents of memory

; location pointed by HL register pair, 2050H, i.e. data 21H by

; one. It will store the result (21 - 1 = 20H) in the same

; memory location.

This instruction decrements the contents of register pair by one. The
result is stored in the same register pair. The rp is register pair such
as BC, DE, HL or stack pointer (SP). Only higher order register is to
be specified within the instruction.

DE = 1020H

; This instruction will decrement the contents of DE register

; pair (1020H) by one and store the result (1020 - 1 = 101FH)

; in the same, DE register pair.

Microprocessors and Interfacing 1-45 An Overview of 8085

1.6.3 Branch Group

1. JMP addr This instruction loads the PC with the address given within the

instruction and resumes the program execution from this location.
Example :
IMP 2000H ; This instruction will load PC with 2000H and processor will

; tetch next instruction from this address.

2. Jcond addr This instruction causes a jump to an address given in the instruction
if the desired condition occurs in the program before the execution
of the instruction. The table 1.3 shows the possible conditions for
jumps.

Instruction code Description Condition for jump
JC Jump on carry CY =1
JHC Jumip on not camy CY =0
JP Jump on positive S=0
JM Jump on minus 5=1
JPE Jump on parity even P =1
JPO Jump on parity cdd P=0
JZ Jump on 2erd =1
JNZ Jump on not 2ens 2=10
Table 1.3 Conditional jumps
Example : Carry fag = 1
JC 2000H ; This instruction will cause a jump o an address 2000H
; e, program counter will load with 2000H since CF = 1.

3. CALL addr The CALL instruction is used to transfer program control to a
subprogram or subroutine. This instrucion pushes the current PC
contents onto the stack and loads the given address into the PC.
Thus the program control is transferred to the address given in the
instruction. Stack pointer is decremented by two.

Example : Stack pointer = 3000H.

6000H CALL 2000H ; This instruction will store the address of instruction next to
s003H —_

4. C cond addr

: CALL (i.e. 6003H) on the stack and load PC with 2000H.

This instruction calls the subroutine at the given address if a
specified condition is satisfied. Before call it stores the address of
instruction next to the call on the stack and decrements stack
pointer by two. The table 1.4 shows the possible conditions for calls.

Microprocessors and Interfacing 1-46 An Overview of 8085

Instruction code Description Condition for CALL
cc Call on carry Cy =1
CNC Call on not camy CY =0
cP Call on positive 3=0
CM Call on minus 3 =1
CPE Call on parity even P=1
CrO Call on parity odd P=0
Gz Cail on zero Z=1
CNZ Call on not zers Z2=10
Table 1.4 Conditional calls
Example : Carry flag = 1, stack pointer = 4000H.

2000H CC 200H ; This instruction will store the address of the next instruction
; Le. 2003H on the stack and load the program
; counter with 3000H.
5 RET This mstruction pops the return addr (address of the instruchon
next to CALL in the main program) from the stack and loads

program counter with this return address. Thus transfers program
control to the instruction next to CALL in the main program.

Example : If SP = 27FDH and contents on the stack are as shown then
5P —» 27FD 00
2TFE 62
27FF
RET ; This instruction will load PC with 6200H and it will transfer

; program control to the address 6200H. It will also increment
; the stack pointer by two.
6. R condition This instruction returns the control to the main program if the

specified condition is satisfied. Table 1.5 shows the possible
conditions for return.

Microprocessors and Interfacing 1-47 An Overview of 8085
Instruction code Description Condition for RET

RC Refurn on camry cY =1
RNC Returm on nol camy CY =0
RP Return on positive s5=0
RM Return on minus a=1

RPE Return an parity even P=1

RPO Return on parity odd P=0
RZ Return an zer Z=1

RMNZ Return on nol zero Z=10

Table 1.5 Conditions for return

7. PCHL This instruction loads the contents of HL register pair into the
program counter. Thus the program control is transferred to the
location whose address is in HL register pair.

Example : HL = a000H
FCHL + This instruction will load 6000H into the program counter

8. RSTn This instruction transfers the program control to the specific
memory address as shown in Table 1.6. This instruction is like a
fixed address CALL instruction. These fixed addresses are also
referred to as vector addresses. The processor multiplies the RST
number by 8 to calculate these vector addresses. Before transferring
the program control to the instruction following the vector address
E5ST instruction saves the current program counter contents on the
stack like CALL instruction

Instruction code Vector Address
RST 0 D=8 = D00OH
RET 1 1=8 = DO0EH
RST 2 2=8 = DDIOH
RST 3 3«8 = 00184
R3T 4 4 =8 = D020H
R5T & S=8 = 0028H
RST & 6=8 = 0030H
RST 7 7T=8 = 0038H
Table 1.6 Vector addresses for return instructions
Example : SP = 3000H
2000H RST 6 ; This instruction will save the current contents of the program

; counter (i.e. address of next instruction 2001H) on the stack
; and it will load the program counter with vector address

Microprocessors and Interfacing 1-48 An Overview of 8085

1.6.4 Logic Group

1. ANAT This instruction logically ANDs the contents of the specified register
with the contents of accumulator and stores the result in the
accumulator. Each bit in the accumulator is logically ANDed with
the corresponding bit in register r, i.e. Dy bit in A with Dy bit in
register r, D, in A with D, in r and so on upto D, bit. The register r
is 8-bit general purpose register such as A, B, C, D, E, H and L.

Example :
s A = 10101010 (AAH), B = 00001111 (OFH)
ANA B ; This instruction will logically AND the contents of B register
1010 1010 ; with the contents of accumulator. It will store the result
: (DAH)
D00 1111 ; in the accumulator.
0000 1010 = 0AH

2. ANA M This instruction logically ANDs the contents of memory location
pointed by HL register pair with the contents of accumulator. The
result is stored in the accumulator. The HL register pair is used as a
memory pointer.

Example : ;A = 01010101 = (55H), HL = 2050H
: (2050H) — 10110011 = (B3H)
ANA M ; This instruction will logically AND the contents of memory
0101 0101 ; location pointed by HL register pair (B3H) with the contents
1011 0011 ; of accumulator (55H). It will store the result (11H) in
; the accumulator
0001 0001 = 11H
3. ANI data This instruction logically ANDs the 8 bit data given in the

instruction with the contents of the accumulator and stores the
result in the accumulator.
Example : A = 1011 0011 = (B3H)
ANI 3FH ; This instruction will logically AND the contents
; of accumulator (B3H) with 3FH. It will store the result (33H)
; in the accumulator.
1011 0011
0011 1111

0011 0011 = 33H

Microprocessors and Interfacing 1-49 An Overview of 8085

S

4, XRAr

Example :

XRA C
1010 1010
0010 1101

1000 0111 = (B7H)
5 XRAM

Example :

XRA M
0101 0101
1011 0011

1110 0110 = E6H
6. XRI data

Example :

XElI 39H

1011 0011
0011 1001

1000 1010 = 8AH
7. ORAr

This instruction logically XORs the contents of the specified register
with the contents of accumulator and stores the result in the
accumulator. The register r is 8-bit general purpose register such as
A, B C,D E Hand L.

A = 1010 1010 (AAH)

- C = 0010 1101 {(2DH)
; This instruction will logically XOR the contents of C register
: with the contents of accumulator. It will store the result

s (B7H) in the accumulator.

This instruction logically XORs the contents of memory location
pointed by HL register pair with the contents of accumulator. The
HL register pair is used as a memory pointer.

A = 0101 0101 = (55H), HL = 2050H

; (2050H) — 1011 0011 = (B3H)

: This instruction will logically XOR the contents of mamaon
; location pointed by HL register pair (2050H) i.e. data B3H
» with the contents of accumulator (55H). It will store the

; result (E&H) in the accumulator.

This instruction logically XORs the 8 bit data given in the
instruction with the contents of the accumulator and stores the
result in the accumulator.

; A= 10110011 = (B3H)

; This instruction will logically XOR the contents of
; accumulator (B3H) with 39H.

5 It will store the result (BAH) in the accumulator.

This instruction logically ORs the contents of specitied register with
the conterts of accumulator and stores the result in the accumulator.
Each bit in the accumulator is ORed with corresponding bit o

register . be. [bit in accumulator s ORed wiath 1y b o egisie

Microprocessors and Interfacing 1-50 An Overview of B085

Example :

ORA B
1010 1010
0001 0010

1011 1010 =

8. ORAM

Example :

ORA M
001 m
1011

BAH

1y mil = F7H

9. ORI data

Example :
LR OsH
1011 0011
GO 100

1011 1011
10. CMP r

Example :
CMPP D

(BBH)

r. D in A with D} in r and so on upto [) bit. The register r is 8-bit
general purpose register such as A, B, C, D, E, H and L.

<A = 1010 1010 (AAH), B = 0001 0010 {12H)

: This instruction will logically OR the contents of B register

; with the contents of accumulator. It will store the result

; (BAH) in the accumulator.

This instruction logically ORs the contents of memory location
pointed by HL register pair with the contents of accumulator. The
result is stored in the accumulator. The HL register pair is used as a
memory pointer,

;A = 0101 0101 = (55H) HL = 2050H

: (2050H) — 1011 0011 = (B3H)
; This instruction will logically OR the contents of memory
i location pointed by HL register pair (B3H) with the contents

; of accumulator (55H). It will store the result (FFH) in the
; accumulator.

This instruction logically ORs the 8 bit data given in the instruction
with the contents of the accumulator and stores the result in the
accumulator.

A = 1011 0011 = (B3H)
; This instruction will logically OR the contents of accumulator
; (B3H) with 08H. It will store the result (BBH) in the

; accumulator.

This instruction subtracts the contents of the specified register from
contents of the accumulator and sets the condition flags as a result
of the subtraction. It sets zero flag if A = r and sets carry flag if
A < r. The register r is 8-bit general purpose register such as A, B,
C. D, E, Hand L

: A = 1011 1000 (B8H) and D = 1011 1001 (B9H)

; This instruction wiil compare the contents of D register “vith
; the contents of accumulator. Here A < D so carry flag will

; set after the execuhion of the instruction.

Microprocessors and Interfacing 1-51 An Overview of B0BS

11. CMP M

Example :

CMP M

12. CP1 data

Example :

CPI 30H

13. STC

Example :

14. CMC

Example :

CMC

15. CMA

Example :

1. RLC

Example :

RLC

This instruction subtracts the contents of the memory location
specified by HL register pair from the contents of the accumulator
and sets the condition flags as a result of subtraction. It sets zero
flag if A = M and sets carry flag if A < M. The HL register pair is

used as a memory pointer.
: A = 1011 1000 (B8H), HL = 2050H

: and (2050H) = 1011 1000 (BSH)

; This instruction will compare the contents of femory

; location (B8H) and the contents of accumulator. Here A = M

; 30 zero Hag will set after the execution of the instruction.

This instruction subtracts the 8 bit data given in the instruchion from

the contents of the accumulator and sets the condition flags as a

result of subtraction. It sets zero flag if A = data and sets carry flag
if A < data.
; A = 1011 1010 = (BAH)

; This instruction will compare 30H with the contents of

; accumulator (BAH). Here A > data so zero and carrv both
: Hags will reset after the execution of the instruction.
This instruction sets carry flag = 1

Carry flag = 0

; This instruction will set the carry flag = 1

This instruction complements the carry flag.

Carry flag = 1

: This instruction will complement the carry flag

i.e. carry flag = 0

This instruction complements each bit of the accumulator.
A = 1000 1000 = B8H

: This instruchion will cnrnplernent each bit of
; accumulator A = 0111 0111 = 77H

This instructon rotates the contents of the accumulator left by one
position. Bit B, is placed in B; as well as in CY.

; A = 01010111 (57H) and CY =1
; After execution of the instruction the accumulator contents
; will be (1010 1110) AEH and carry flag will reset.

Microprocessors and Interfacing 1-52 An Dverview of 8085

2. RRC

Example :

Example :
RAL

Example :
RAR

This instruction rotates the contents of the accumulator right by one
position. Bit By is placed in B; as well as in CY.

;A = 1001 1010 (9AH) and CY = 1

; After execution of the instruction the accumulator contents

; will be (0100 1101) 4DH and carry flag will reset.

This instruction rotates the contents of the accumulator left by one
position. Bit B, is placed in CY and CY is placed in By .

; A = 10101101 (ADH) and CY = 0

: After execution of the instruction accumulator contents will

: be (0101 1010) 5AH and carry flag will set.

This instruction rotates the contents of the accumulator nght by one
position. Bit By is placed in CY and CY is placed in B,

;A = 1010 0011 (A3H) and CY = 0
; After execution of the instruction accumulator contents will
; be (0701 0001} 51H and carry flag will set.

1.6.5 Stack Operations

1. PUSH rp

Example :
I'USH D

2., PUSH PSW

Example :

I'USH PswW

[his instruction decrements stack pointer by one and copies the
higher byte of the register pair into the memory location pointed by
stack pointer. It then decrements the stack puinter again by one and
cupies the lower byte of the register pair into the memory location
pointed by stack pointer. The rp is 16-bit register pair such as BC,
DE, HL. Only higher order register is to be specified within the
instruction.

SP = 2000H, DE = 1050H.

; This instruction will decrement the stack pointer (2000H) by one
(SP = 1FFFH) and copies the contents of D register (10H) into the
memory location 1FFFH. 1t then decrements the stack pointer again
by one (5P = IFFEH) and copies the contents of E register (50H)
into the memory location 1FFEH.

This instruction decrements stack pointer by one and copies the
accumulator contents into the memory location pointed by stack
pointer. It then decrements the stack pointer again by one and
copies the flag register into the memory location pointed by the
stack pointer.

S = 2000H, A = 20H, Flag register = 80H

This instruction d.crements the stack pointer (5 = 2000CH) by one
(" = IFFFH) and copics the contents of the accumulator (20H)into
the memory location 1FFFH. It then decrements the stack pointer

Microprocessors and Interfacing 1-53

An Overview of B0BS

3. POP rp

Example :
POP B

4. POP P5SW

Example :
POP PSW

Example :
SPHL

6. XTHL

again by one (5P = 1FFEH) and copies the contents of the flag
register (B0H) into the memaory location 1FFEH.

This instruction copies the contents of memory location pointed by
the stack pointer into the lower byte of the specified register pair
and increments the stack pointer by one. It then copies the contents
of memory location pointed by stack pointer into the higher byte of
the specified register pair and increments the stack pointer again by
one. The rp is 16-bit register pair such as BC, DE, HL. Only higher
order register is to be specified within the instruction.

SI' = 2000H, (2000H) = 30H, (2001H) = 50H

; This instruction will copy the contents of memory location

; pointed by stack pointer, 2000H (i.e. data 30H) into the C

: register. It will then increment the stack pointer by one,

; 2001H and will copy the contents of memory location

: pointed by stack pointer, 2001H (i.e. data 50H) into B

: register, and increment the stack pointer again by one.

This instruction copies the contents of memory location pointed by
the stack pointer into the flag register and increments the stack
pointer by one. [t then copies the contents of memory location
pointed by stack pointer into the accumulator and increments the
stack pointer again by one.

SP = 2000H, (2000H) = 30H, (2001H) = 50H

; This instruction will copy the contents of memory location

: pointed by the stack pointer, 2000H (i.e. data 30H) into the

; flag register. It will then increment the stack pointer by one,

; 2001H and will copy the contents of memory location

; pointed by stack pointer into the accumulator and increment

; the stack pointer again by one.

This instruction copies the contents of HL register pair into the stack
pointer. The contents of H register are copied to higher order byte

of stack pointer and contents of L register are copied to the lower

byte of stack pointer.
HL = 2500H
; This instruction will copy 2500H into stack pointer. So after

; execution of instruction stack pointer contents will be 2500H.

This instruction exchanges the contents of memory location pointed
by the stack pointer with the contents of L register and the contents

Microprocessors and Interfacing 1-54 An Overview of 8085

2.

Example :
XTHL

Input/Output
IN addr(B-bit)

Example :

IN 80H

OUT addr(8-bit)

Example :

OUT 50H

of the next memory location with the contents of H register. This
instruction does not modify stack pointer contents.

: HL = 3040H and SP = 2700H, (2700H) = 50H, (2701H) = 60H
; This instruction will exchange the contents of L register

; (40H) with the contents of memory location 2700H (i.e. 50H)

; and the contents of H register (30H) with the contents of
; memory location 2701H (ie. 60H).

This instruction copies the data at the port whose address is
specified in the instruction into the accumulator.

Port address = 80H, data stored at port address 80H, (80H) = 10H
; This instruction will copy the data stored at address 80H, i.e.
; data 10H in the accumulator.

This instruction sends the contents of accumulator to the output
port whose address is specified within the instruction.
A = 40H

; This instruction will send the contents of accumulator
: (40H) to the output port whose address is 50H.

1.6.6 Machine Control Group

1.

El

DI

NOP

HLT

This instruction sets the interrupt enable flip flop to enable
interrupts. When the microprocessor is reset or after interrupt
acknowledge, the interrupt enable flip-flop is reset. This instruction
is used to reenable the interrupts.

This instruction resets the interrupt enable flip-flop to disable
interrupts. This instruction disables all interrupts except TRAP since
TRAP is non-maskable interrupt (cannot be disabled. It is always
enabled).

Mo operation is performed.

This instruction halts the processor. It can be restarted by a valid
interrupt or by applying a RESET signal.

This instruction masks the interrupts as desired. It also sends out
serial data through the SOD pin. For this instruction command byte
must be loaded in the accumulator.

Microprocessors and Interfacing 1-55 An Overview of 8085

Example : i) A = 0EH

Dy Dg Os D, Dy Dz D, Dy
SO0 S0OE X RSTT.5 MSE M7.5 ME_5 M5.5 Register A
0 0 0 0 1 1 1 0 -! DEH
SIM ; This instruction will mask RST 7.5 and RST 6.5 interrupts
; where as EST 5.5 interrupt will be unmasked. It will also
; disable serial output.
6. RIM This instruction copies the status of the interrupts into the
accumulator. It also reads the serial data through the SID pin.
Example :
EIM - After execution of RIM instruction if the contents of
; accumulator are 4BH then we get following information.
D? D'S D!l D-ﬂ Dﬁ Dz D-| DE
SiD I 7.5 | 6.5 155 | IE M7.5 MB.5 M5.5 Register A
1] 1 Q0 0 1 0 1 1 = 4BH

i.e. a) RST 7.5 is pending
b) BST 5.5 and RST 6.5 are masked
¢} Interrupt Enable flip-flop is set
d) Serial i/p data is zero.

1.7 8085 Interrupt Structure and Operation

1.7.1 Types of Interrupts
The 8085 has multilevel interrupt system. It supports two types of interrupts:

a. Hardware b. Software

Hardware : Some pins on the B085 allow peripheral device to interrupt the main
program for [/0O operations. When an interrupt occurs, the 8085 completes the instruction
it is currently executing and transfers the program conirol to a subroutine that services the
peripheral device. Upon completion of the service routine, the MPU returns to the main
program. These types of interrupts, where MPU pins are used to receive interrupt requests,
are called hardware interrupts.

Software : In software interrupts, the cause of the interrupt is an execution of the
instruction. These are special instructions supported by the microprocessor. After execution
of these instructions microprocessor completes the execution of the instruchon it is
currently executing and transfers the program control to the subroutine program. Upon
completion of the execution of the subroutine program, program control returns to the
main program.

- Microprocessors and Interfacing 1-58 An Overview of B0BS
1.7.2 Overall Interrupt Structure

1.7.2.1 Hardware Interrupts in 8085
The BO85 has five hardware interrupts :
1. TRAPP 2. RST75 3. RST 65 4. RST 55 5. INTR

When any of these pins, except INTR, is active, the internal control circuit ot the B0BS
produces a CALL to a predetermined memory location. This memory location, where the
subroutine starts is referred to as vector location and such interrupts are called vectored
interrupts. The INTR is not a vectored interrupt. It receives the address of the subroutine
from the external device.

In 8085, all interrupts except TRAI’ are maskable. When logic signal is applied to a
maskable interrupt input, the B085 is interrupted only if that particular input is enabled.
These interrupts can be enabled or disabled under program control. If disabled, 8085
disables an interrupt request. The interrupt TRAP is nonmaskable whish means that it is
not maskable by program control. The Fig. 1.38 shows the interrupt structure of 8085. The

Priority Input Pin Mask Vactor

RST 7.5 Intermupt
recognized

L

Level triggened

—_—

Level triggered

Level inggered

Fig. 1.38 Interrupt structure of 8085

Microprocessors and Interfacing 1-57 An Overview of 8085
il

figure indicates that, the B085 is designed to respond to edge triggering, level ‘trigirering or
both.

TRAP : This interrupt is a nonmaskable interrupt. It is unaffected by any mask or
interrupt enable. TRAF has the highest priority. TRAP interrupt is edge and level
triggered. This means that the TRAP must go high and remain high until it is
acknowledged. This avoids false triggering caused by noise and fransients.

) caus ooz
Lp— .} 0
>

TRAR

]

ACKNOWLEDGE

Fig. 1.39 Interrupt circuit for trap interrupt

As shown in the Fig. 1.39, the positive edge of TRAP signal sets the D flip-flop.
However, due to the AND gate, it is necessary to sustain high level on the TRAP input.
There are two ways to clear TRAF interrupt :

1. By resetting microprocessor ie. giving a low signal on RESETIN pin (External
signal).
2. By giving a high TRAP ACKNOWLEDGE (Internal signal).

After recogniion of TRAP interrupt, 8085 internally generates a high TRAP
ACKNOWLEDGE which clears the flip flop. Once the TRAP is acknowledged, the 8085
completes its current instruction. [t then pushes the address of the next instruction i.e.
return address onto the stack and loads PC with the fixed vector address 0024H. Due to
this, B085 starts execution of instructions from address 0024H which is the starting address
of an interrupt service routine for TRAP.

RST 7.5 : The RST 7.5 interrupt is a maskable interrupt. It has the second highest
priority. As shown in Fig. 1.38, it is positive edge triggered and the positive edge trigger
is stored internally by the D-flip flop until it is cleared by software reset using SIM
instruction or by internally generated ACKNOWLEDGE signal.

- The positive edge signal on the RST 7.5 pin sets the D flip flop. If the mask bit M 7.5
is 0 i.e. RST 7.5 is unmasked then B085 completes its current instruction. It then pushes the
address of the next instruction onto the stack and loads PC with the fixed vector address
D03CH. Due to this, 8085 starts execution of instructions from address 003CH which is the
starting address of an interrupt service routine for RST 7.5.

Microprocessors and Interfacing 1-58 An Overview of B085

RST 635 and RST 55 : The B5T 65 and RST 55 both are level triggered. These
interrupts can e masked using S5IM instruction. The RST 6.5 has the third priority whereas
RST 5.5 has the fourth priority. The vector addresses of RST 6.5 and R5T 5.5 are 0034H
and W2CH respectively. After recognition of RST 6.5 or RST 5.5 interrupt, 8085 completes
its current instruction; pushes the address of next instruction onto the stack and loads PC
with corresponding vector address,

INTR : INTR is a maskable interrupt, but not the vector interrupt. It has the lowest priority.
The following sequence of events occur when INTR signal goes high.

|. The 8085 checks the status of INTR signal during execution of each instruction.

If INTR signal is high, then 8085 completes its current instruction and sends an
active low interrupt acknowledge signal (INTA) if the interrupt is enabled.

¥]

3, In response to the INTA signal, external logic places an instruction OPCODE on the
data bus. In the case of multibyte instruchon, additional interrupt acknowledge
machine cvcles are generated by the B0B5 to transfer the additional bytes into the
MICTOPrOCESSOT,

4. On receiving the instructon, the 8085 saves the address of next instruction on stack
and executes received instruction.

MNote : Theoretically, the exbternal logic can place any instruction code on the data bus
in response to the INTA. However, only CALL and RST codes save the contents of the PC
on the stack and branch program control to the subroutine address,

Response for RST instruction : If the external device places an opcode for any one of
the R5T instruction (RST 0 - R5T 7), then BO85 pushes the contents of PC onto the stack. It
then branches the program control to the vector address of the corresponding RST
instruction.

Response for CALL instruction : If the external device places an opcode for CALL
instruction then 8085 generates two additional interrupt acknowledge cycles.
1. It sends an active low interrupt acknowledge signal second time.

2. In response to second INTA signal, external logic places the lower byte address for
the CALL instruction.

3. After receiving lower byte address, 8085 sends the third interrupt acknowledge
signal.

4. In response to third INTA signal, external logic places the higher byte address for
the CALL instruction.

5. After receiving sixteen bit address for CALL, B085 pushes the contents of the PC

onto the stack and branches the program control to the subroutine whose address
is received from the external logic.

Microprocessors and Interfacing 1-59 4 AN Overview of 8085

Example : The Fig. 1.40 shows the diagram of external logic that gives the BST 7
instruction opcode on interrupt acknowledge.

BOBSA,
Microprocessor
ADg-AD, B,
LR
Three - staie
e
L g
5
INTR gy
R
g et
Reaquasi from
ELH{-—--I'-I-r 11D davice for
an interrupt
b
Flip-flop

Fig. 1.40 External logic that gives the RST 7 instruction opcode

External logic controls a tri-state buffer with the INTA signal in order to place an
opcode for RST 7 instruction. The INTA signal from the microprocessor is used as an
Output Enable signal for the buffer as well as reset signal for D flip flop. The request from
the 1/0 device is routed through the D flip-flop to the INTR. The D flip flop is used to
hold the INTR signal high until 8085 gives interrupt acknowledge signal. The INTA signal
that is generated enables the tri-state buffer whose data inputs are hardwired to the value
equal to the opeode for RST 7 (FFH) instruction. The 8085 receives this opcode during
interrupt acknowledge cycle. After receiving the opcode B085 pushes the contents of
program counter onto the stack, thus saving the return address. It then branches the
program control to the address 0038H (Vector address of RST 7). Table 1.7 shows the
summary of hardware interrupts in B085.

hﬂqqprw and Interfacing 1-60 An Overview of 8085
| W T

T T
interrupt type 1- Trigger i Priority Maskabla Vector address
THRAF ' Edge and Level 5' 19 (Highest) Mo o024 H
RET 7.5 Edge : 2 Yas D03CH
S -
R3T 6.5 Lewal | o Yes] 0034H
RST 5.5 el | 4 Yes | oo2cH
WTR Level | 5" (Lowest) Yes
Table 1.7

1.7.2.2 Software Interrupts in 8085

The 28085 has eight software interrupts from RST 0 to RST 7. The vector address for
these interrupts can be calculated as follows.

Inlt:rrl.:lpt number = 8 = wvector address
For example : 5= 8 =40 = 28H

= Vector address for interrupt RST 5 is 0028H.
The Table 1.8 shows the vector addresses of all interrupL&

Instruction HEX code Vector Address
R&T O L+ Q000H
RST 1 CF 0008H
RET 2 o7 0010H
RST 3 DF 00184
RST 4 E7 0020H
RST 5 EF 0028H
RST & FT 0030H
RST 7 FF Q0E8H

Table 1.8 Vector addresses for software interrupts

1.7.3 Masking / Unmasking of Interrupts

As mentioned earlier, maskable interrupts are enabled and disabled under program
control. In this section we will see how interrupts can be masked or unmasked using
program control. There are four instructions used for control of interrupts :

1. El
D1
RIM
SIM

]

L

Microprocessors and Interfacing 1-61 An Overview of 8085

El : Enable Interrupt

The El instruction sets the interrupt enable flip-flop, as shown in Fig. 1.38. Thus RST
7.5, RST 6.5, RST 5.5 and INTR are en.bled using El instruction.

It is important to note that when any interrupt is acknowledged, interrupt enable flip
flop resets and disables all interrupts. To enable interrupt in further process it is necessary
to execute El instruction within interrupt service routine.

DI : Disable Interrupt

The DI instruction resets the interrupt enable flip flop, as shown in Fig. 1.38. Thus it
disables RST 7.5, RST &.5, RST 5.5 and INTR interrupits.

SIM : Set Interrupt Mask

This instruction is used to set interrupt mask and to send serial output. It transfers the
contents of accumulator to interrupt control logic and serial [/0 port. Thus it is necessary
to load appropriate contents in the accumulator before execution of SIM instruction.

SIM Instruction Format :
Bits 0 - 2 will sot/reset the mask bits for RST 5.5, R5T 6.5, and RST 7.5 of the nterrupt
mask register.
Bit 3 enables the functioning of bits [- 2. It enables or disables the masking control.
Bit 4 is used to reset R5T 7.5 request; regardless of whether or not RST 7.5 is masked.
Bit 5 is don’t care.
Bit 6 enables the serial output if it is set.
Bit 7 decides the data to be sent on the serial output pin of 8085,

wt Irvterrupd comtrol logic

——

500D | SDE X R7.5 | M5E | M7T.5 | MBS | M55

Sernial output dats ——— 1 - Mask
If 1: serial data enable — 0 - Unmask
If O: serial data disable Mask sat enable

1 - Masking is anablad
0 - Masking is disabled

Reset RET T.5 Intenrup
Fig. 1.41 SIM instruction format

Microprocessors and Interfacing 1-62 An Overview of B085

Example 1 : To enable RST 6.5 and mask all other interrupts we must execute following
instructions.

50D | SDE X R7T5| MSE MT75 MES | M55

0] 1] 1] 1 i 0 i = ooH
MVI A, 0DH ' Load control format in accumulator
=IM ; Set interrupt mask.

Example 2 : The f[ollowing instruction sequence enables RST 7.5 and RST 65 and
disables RST 5.5

S0D | SDE X RT7TS5) MSE MTS5 MBS | M55

] 1] 1] (1] 1 1] 1 = 09
MVI A, (9H 5 lpad control format in accumulator
SIM ; Set interrupt mask

1.7.4 Pending Interrupts
RIM : Read Interrupt Mask

The Read Interrupt Mask, RIM, instruction loads the status of the interrupt mask, the
pending interrupts and the contents of the serial input data line, 51D, into the accumulator.
Thus, it is possible to monitor status of interrupt mask, pending interrupts and serial
input. There are number of interrupts. When one interrupt is being serviced, other
interrupt requests may occur. If the interrupt requests are of higher priority, 8085 branches
program control to the requested interrupt service routines. But when the interrupt
requests are of lower priority, B085 stores the information about these interrupt requests.
Such interrupts are called pending interrupts. The status of pending interrupts can be
monitored using RIM instruction.

RIM Instruction Format :
Bits 0-2 give the status of interrupt mask. Logic 1 indicates the interrupt is masked.
Bit 3 gives the status of interrupt enable flag. If 1, interrupts are enabled.
Bits 4-6 give the status of pending interrupts.
Bit 7 gives the status of serial input data line.

Microprocessors and Interfacing 1-63 An Overview of 8085

Pending
Serial input inlermupts Irdlarmupl mask

SiD | 175 gs | 155 IE M7.5 | ME5 | M35

Interrupt Masks
1 = Mask, 0 = Urnunass

Interrupt enable fag
1= Enabls, D = Disable

Feandmng Intermupls
1 = Panding

Serial input data

Fig. 1.42 RIM instruction format

Example 3 : To check if RST 55 is pending it is necessary to execute following
instructions

SID | 175 | 165 | 155 IE MT5 | MBS | M55

0 L] i) 1 i i] 0 L] = 10H

RIM ¢ Bead interrupt mask and pending interrcupts

ANI 10 H ; Mask all bits except pending RST 5.5 birt.

CHE QQ02CH ; Call interrupt service routine for RST 5.5 if it
; is pending.

Example 4 : The following instruction sequence check~ whether RST 7.5 is individually

masked or not.

SID | 175 | 165 | 155 IE EITS| MBS | M55

0 0 0 0 1 1 a | 1 - 0DH
RIM i Read interrupt mask
ANI 04H ; Mask all bits except RST 7.5
JNZ unmask ; Jump if not zero to unmask.

Example 5 : Write a program to diplay real time clock. Assume that a periodic signal is
interrupting RST 7.5 signal after every (.5 seconds.

Main program
MvI C, 0O0H ; Inltialize counter

LXI H, 0000H Initialize seconds, and minutes
MVI D, 00H Initialize hours
MUyI AR, OBH

s Wa Wi W

Microprocessors.and Interfacing 1-64 An Overview of 8085

Star

Counter = Counter + 1

Counter =0

Incremant Sec count

Incrameant Min count

Yes

Min=0

Imengrr ol Hour count

>

Hour=10

Display Hours, Mens,
and Saconds

Enabli brberrugd

GO

Fig. 1.43 Flowchart for interrupt subroutine

Microprocessors and Interfacing

1-85 An Overview of 8085

SIM
EI

HERE JMF HEERE

ISR - Interrupt service Routine

INR C
MOV A, C
CPI, 02H
JNZ LAST
MVI C, 0O0H
MOV A, L
ADI 01H
DAA

MOV L, A
CPI E0H
JNZ LAST
MVI L, OOH
MOV A, H
ADI O1H
DARA
MOV
CPI
JNZ
MVI H,
MOV A,D
ADI O1H
DAA
MoV
CPI

H, A
B60H
LAST
ooOH

D,A
24 H
JNZ LAST

MVI D, OOH
CALL DISPLAY
EI

RET

LAST :

Wy MWy Wy Wy g Wa Ww s Na Tw wa Ra

e Wa W Ea B

Wy WE Wy W Wi W Wy Wa W EE W g

Enable RST 7.5 interrupt
Wait for interrupt.

Increment counter

Check for 1 second
FReset counter

Get seconds counter
Increment seconds counter
Adjust for BCD

Save seconds counter
Check for 60 seconds

If not 60, goto display
Reset seconds counter
Get minutes counter
Increment minutes counter
Adjust for BCD

Save minutes counter
Check for 60 minutes

If not 60, goto display
Reset minutes countear
et hours counter
Increment hours counter
Adjust for BCD

Save hours counter
Check for 24 hours

If not 24, goto display
Reset hours counter
Call display subroutine
Enable Interrupt

Eeturn to main program

Review Questions
. Explain the features of 8085

ke

of each register.,

e oMo

2. Give the clock out frequency and state time, T, of an 8085A operating with ench of the following
Sfrequency crystals @ 6.25 MHz, 6.144 MHz, 5 MHz and 4 MHz.
Lisi the internal registers in 8085A, their abbreviations and lengths, Describe the primary function

Give the format of flag register in 8085. Explain each flag.

Draw the functional bock diagram of microprocessor 8085 and explain in brief.
Explain different control signals used by 8085,

Why AD-AD, lines are multiplezed ?

Wit is the use of ALE signal 7

What is the use of CLKOUT and RESET OUT signals of 8085 processor ?

Microprocessors and Interfacing 1-66 An Overview of 8085

1.

Ii.
12.

13.
14.

21.
22,

23.
24
25.
26.
27,
28.
29.

Dseribe the funchion of following pins in B085.

n. READY b ALE ¢ IOM d HOLD e RESET

Expiain the signals used in DMA operation in S085.

Define

1. Instruction cycle 2. Machine cycle 3. T state

What is the necessity to have two status lines 5y and S in 8085 7

Explain various machine cycles supported by 8085,

D and explain the memory read cycle of 8085.

Dirrw and explain the memory write cyele of 8085.

Draw and explain the IO read cycle of S085.

Dirae and explain the 170 write cyele of 8085,

Explain the classification of the instruction set of 8085 microprocessor with suitable examples,
With the heip of one example in ench case explain the effect of the following instructions in 8085,
. LHLD addr b. ADD M

¢ RST 4 d. XTHL
e. DAA f. CP 2000
¢. DAD B ho IN 20H
i, RIM j. SIM

Write the hwg ways o initinlize stack pointer of FFFFH.
Compare the follmwing pafrs of instructions with their opeodes, operations, instruction bytes,
addressing mades, affected flags and Hee resats.

a. MVIEA, 00H and XRA A

b SUB B and CMP B

& [MP 2700 and PCHL

d. XTHL and SPHL

¢, LDA 2000H and LHLD 2000H
f. RRC and RAR

Wihat do you mean by hardware interrupts?

What do you mean by software interrupts?

Explain the hardware interrupts supported by 8085.

What do you mean by vectored inberrupts?

Explain how 8085 responds to INTR interrupt.

Explain the software interrupts supported by 8085,

What do you mean by masking the interrupt? How is il achieved in 80857
What do you mean by pending interrupls?

Qag

Architecture of 8086 Microprocessor

_ ;

In

1978, Intel came out with the 8086 processor. The Intel B086 is a 16-bit

microprocessor, implemented in N-channel, depletion load, silicon gate technology
(HMO5), and packaged it in a 40 pin dual in line package. In this chapter, we study
features, architecture, register organisation, bus operation and memory segmentation.

2.1 Features of 8086

1.

e

The B08&6 is a 16-bit microprocessor. The term “16-bit” means that its arithmetic
logic unit, internal registers and most of its instructions are designed to work with
16-bit bi:ﬁar}r winrds.

The 8086 has a 16-bit data bus, so it can read data from or write data to memory
and ports either 16 bits or 8 bits at a time. The B0B8, however, has an 8-bit data
bus, so it can only read data from or write data to memory and ports 8 bits at a
time.

The BOB6 has a 20-bit address bus, so it can directly access 2% or 10,48,576 (1Mb)
memory locations. Each of the 10, 48, 576 memory locations is byte wide.
Therefore, a sixteen-bit words are stored in two consecutive memory locations. The
8088 also has a 20-bit address bus, so it can also address 2° or 10, 48, 576 memory
locations.

The 8086 can generate 16-bit 1/O address, hence it can access 2'® = 65536 1/0
ports.

The 8086 provides fourteen 16-bit registers.

The 8086 has multiplexed address and data bus which reduces the number of pins
needed, but does slow down the transfer of data (drawback).

The 8086 requires one phase clock with a 33% duty cycle to provide optimized
internal Himing.

Range of clock rates (refer Fig. 2.1)
are :- 5 MHz for 8086

S\ /L 8 MHz for 8086-2

T FALE]
T

10 MHz for 8086-1

Fig. 2.1 Clock cycle
2-1)

Microprocessors and Interfacing 2-2 Architecture of B0BE Microprocessor

8.

10,

11.

1.

The B0B6 is possible to perform bit, byte, word and block operations in 8086. It
performs the arithmetic and logical operations on bit, byte, word and decimal
numbers including multiply and divide.

The Intel 8086 is designed to operate in two modes, namely the minimum mode
and the maximum mode. When only ¢ne 8086 CPU is to be used in a
microcomputer system, the 8086 is used in the minimum mode of operation. In
this mode the CPU issues the control sighils’ required by memory and 1/0 devices.
In multiprocessor (more than one processor in the system) system 8086 operates in
maximum mode. In maximum mode, control signals are generated with the help of
external bus controller (B288).

The Intel 8086 supports mulliprogramming. In multiprogramming, the code for
two or more processes is in memory at the same time and is executed in a
time-multiplexed fashion.

An interesting feature of the 8086 is that it fetches upto six instruction b}rtm
(4 instruction bytes for B088) from memory and queuve stores them in order to
speed up instruction execution. Later we will discuss this in detail.

The 8086 provides powerful instruction set with the following addressing modes :
Register, immediate, direct, indirect through an index or base, indirect through the
sum of a base and an index register, relative and implied.

2.2 Architecture of 8086

Fig. 2.2 shows a block diagram of the 8086 internal architecture. It is internally divided
o b separate functional units, These are the Bus Interface Unit (BIU) and the
Execution Unit (EU). These two functional units can work simultaneously to increase
svstem speed and hence the throughput. Throughput is a measure of number of
mstructions executed per unit Hme.

2.2.1 Bus Interface Unit [BIU]

Ihe bus interface unit is the 8086°s interface to the outside world. It provides a full
16-bit bi-directional data bus and 20-bit address bus. The bus interface unit is responsible
for performing all external bus operations, as listed below.

Functions of Bus Interface Unit

h

-_—

."I.

Fsemds address of the memory or 1/0.

It fitches instruction from MEemary.

I reads data from port/ memory.

t writes Jata into port/memory.

I supports instruction queuing.

==

It provides the address relocation taceity.

Hinm_pmamlql;i and Interfacing 2-3 Architecture of B0BE Microprocessor

Memony
Imerlsce

. I
| BIU C-Bus !
: :
I § !
1
! [A f Instruction I
; B-bus o Straam :
; ES 3 Byle !
| Clueua 1
! cs 2 |
! 58 ! :
1 D& :______________ _______________ '1
! P i]
| : Control .
S+ S g |

i . 1
i EU 1& A-Bus :
L}
i 1
1 . H
s ax [A AL '
! ex BH BL [
! Arithmetic i
L - CH CL [
i Logc Linit
' ox [_ow oL - ;
i sP : > '
i BP 4 '
' Sl Operands !
: 7] Fiags .) '

Fig. 2.2 8086 internal block diagram

To implement these functions the BIU contains the instruction queue, segment registers
instruction pointer, address summer and bus control logic.

Instruction Queue

To speed up program execution, the BIU fetches six instruction bytes ahead of hme
from the memory. These prefetched instruction bytes are held for the execution unit in 2
group of registers called Queue. With the help of queue it is possible to fetch. next
instruction when current instruction is in execution. For example, current instruction in
execution is a mulliplication instruction. In 8086, operands for multiplication operations are
within registers. Still it requires 100 clock cycles o execute multiply instruction. Like
multiplication there are number of other instructions in 8086 which need quite a large
number of clock cycles for execution. During this execution time the BIU fetches the next
instruction or instructions from memory into the instruction queuve instead of remaining
idle. The BIU continues this process as long as the queue is not full. Due to this, execution
unit gets the ready instruction in the queue and instruction fetch time is eliminated. This is
illustrated in Fig. 2.3.

The queue operates on the principle first in first out (FIFO). So that the execution unit
gets the instructions for execution in the order they are fetched. In case of JUMP and
CALL instructions, instruction already fetched in queue are of no use. Hence, in these

Microprocessors and Interfacing 2-4 Architecture of 8086 Microprocessor

1 Time required for execulion of two instructions without pq:-HInqu
I I

. Time__;
T‘_nwd_-dl
uential
5:?.,,,“, Fy D, E, Fa D:] E:
i
I
1
1
BILI Fj Fx Fy :
I
Cwerlapging i
phases |
EL o, E, Dy E; D, E;
Timed réquanied for axscubion of hvo
imsfructions because of pipalining
Fig. 2.3 Pipelining

cases queune is dumped and newly formed by loading instructions from new address
specified by JUMP or CALL instruction. Feature of fetching the next instruction while the
current instruction is executing is called pipelining.

The length of the queue should be such that EU should get the next instruction from
the queue of the BIU immediately after the execution of the current instruction. To satisfy
this, number of pre-fetched instruction in the queue and hence the queue length depends
on the fetching speed and the execution speed. Sometime queue length may be restricted
due to the space available on the CPU chip.

2.2.2 Execution Unit [EU]

The execution unit of 8086 tells the BIU from where to fetch instructioms or data,
decodes instructions and executes instructions. It contains
* Control Circuitry

* [Instruction Decoder
* Arithmetic Logic Unit (ALL)
Register Organisation
s Flag Register
* General Purpose Registers
¢ Pointers and Index Registers
Control Circuitry, Instruction Decoder, ALU
The control circuitry in the EU directs the internal operations. A decoder in the EU
translates the instructions fetched from memory into a series of actions which the EU

performs. ALU is 16-bit. It can add, subtract, AND, OR, XOR, increment, decrements,
complement and shift binary numbers.

Microprogessors and Interfacing 2-5 Architecture of B0B6 Microprocessar,
2.3 Register Organisation

The B086 has a powerful set of registers. It includes general purpose registers, segment
registers, pointers and index registers, and flag register. The Fig. 2.4 shows the register
organisation of B086. It is also known as programmer’s model of 8086. The registers shown
in programmer’s model are accessible to programmer. As shown in the Fig. 2.4, all the
registers of B0B6 are 16-bit registers.

5P

15 87 0O
AX | AH | AL = BP
BX | BH | BL DS Sl
CX |CH| CL ! ES]
DX | OH | DL 55 F I

{a) Genaral purpose registers {b) Segment reglsters (e} Flag registers [d} Pointer and
index registers

Fig. 2.4 Register organisation of 8086

2.3.1 General Purpose Registers

The B86 has four 16-bit general purpose registers labeled AX, BX, CX and DX. Each
16-bit general purpose register can be split into two B-bit registers. The letters L and H
specify the lower and higher bytes of a particular register. For example, BH means the
higher byte (B-bits) of the BX register and BL means the lower byte (8-bits) of the BX
register. The letter X is used to specify the complete 16-bit register.

The general purpose registers are either used for holding data, variables and
intermediate results temporarily. They can also be used as a counters or used for storing
offset address for some particular addressing modes. The register AX is used as 16-bit
accumulator whereas register AL (lowerbyte of AX) is used as 8-bit accumulator. The
register BX is also used as offset storage for generating physical addresses in case of
certain addressing modes. On the other hand, the register CX is also used as a default
counter in case of string and loop instructions.

2.3.2 Segment Registers

The physical address of the 8086 is 20-bits wide to access 1 Mbyte memory locations.
However, its registers and memory locations which contain logical addresses are just
16-bits wide. Hence 8086 uses memory segmentation. It treats the 1 Mbyte of memory as
divided into segments, with'a maximum size of a segment as 64 Kbytes. Thus any location
within the segment can be accessed using 16 bits. The 8086 allows only four active

Microprocessors and Interfacing 2-6 Architecture of BOBE Microprocessor |

segments at a ime, as shown in the Fig. 2.5. For the selection of the four active segments
the 16-bit segment registers are provided by the bus interface unit {BIU) of the B086. These
four registers are :

Address
FEFFFH

Exira segment }Ed K

M
H
i

Stack segment } od K

1 Mbyte
physical

Data segment } 64 K

Code sagment }54 K

DO000H

Fig. 2.5 Memory segmentation and segment registers
Code segment (CS) register, the data segment (DS) register, the stack segment (S5)
register, and the extra segment (ES) register. These are used to hold the upper 16-bits of
the starting addresses of the four memory segments, on which B0B6 works at a particular
time. For example, the value in C5 identifies the starting address of 64 K-byte segment
known as code segment. By "starting address”, we mean the lowest addressed byte in the
active code segment. The starting address is also known as base address or segment base.

The BIU always inserts zeros for the lower 4 bits (nibble) in the contents of segment
register to generate 20-bit base address. For example, if the code segment register contains
348AH, then code segment will start at address 348A0H.

Functions of Segment Registers

1. The CS register holds the upper 16-bits of the starting address of the segment from
which the BIU is currently fetching the instruction code byte.

2. The S5 register is used for the upper 16-bits of the starting address for the
program stack (all stack related instructions will operate on stack).

Microprocessors and Interfacing 2-7 Mﬂmwm

3. ES register and DS register are used to hold the upper 16-bits of the starting
address of the two memory segments which are used for data.

2.3.3 Pointers and Index Registers

All segment registers are 16-bit wide. But it is necessary to generate 20-bit address
(physical address) on the address bus. To get 20-bit physical address one or more pointer
or index registers are associated with each segment register. The pointer registers I, BP
and 5P are associated with code, data and stack segments, respectively. They hold the
offset within the code, data and stack segments, respectively. The index registers DI and SI
are used as a general purpose registers as well as for offset storage in case of indexed,
based indexed and relative based indexed addressing modes. The detail description of
pointers and index register is given in section 2.5.

2.3.4 Flag Register
A flag is a flip-flop which indicates some condition produced by the execution of an

instruchion or controls certain operations of the EU. The flag register contains nine active
flags as shown in the Fig. 2.6.

8085 Compatible Flags
BIT 15 14 13 12 11 0 8% 8|7 & 5 4 3 2 1 0O
ViU UW|U|OFIDF[IF [TF|SF|2ZF| U |AF| U |PF| U |CF

i, - .I I- t
U = Undefined | Carry Flag : Set by carry out of MSB
Parity Flag : Set if resull has even parity

Auxiliary Carry Flag for BCD
Zero Flag : Set if result = 0
Sign Flag = MSB of result
Single step rap
interrupt enable -
Sftring direction
Crwverflow

Fig. 2.6 8086 flag register bit pattern
Six of them are used to indicate some condition produced by instruchion.

1. Carry Flag (CF) : [In case of addition this flag is set if there is a carry out of the M5B,
The carry flag also serves as a borrow flag for subtraction. In case
of subtraction it is set when borrow is needed.

2. Parity Flag (PF) : It is set to 1 if result of byte operation or lower byte of the word
operation contain an even number of ones; otherwise it is zero.

3. Auxiliary Flag (AF):This flag is set if there is an overflow out of bit 3 ie, carry from
lower nibble to higher nibble (D, bit to D, bit). This flag is used for
BCD operations and it is not available for the programmer.

Microprocessors and Interfacing 2-8 Architecture of 8086 Microprocessor

4. Zero Flag (ZF) : The zero flag sets if the result of operation in ALU is zero and
flag resets if the result is nonzero. The zero flag is also set if a
certain register content becomes zero following an increment or
decrement operation of that register.

5. Sign Flag (SF): After the execution of arithmetic or logical operations, if the M5B
of the result is 1, the sign bit is set. Sign bit 1 indicates the result is
negative; otherwise it is positive.

6. Overflow Flag (OF):This flag is set if result is out of range. For addition this flag is set
when there is a carry into the M5B and no carry out of the M5B or
vice-versa. For subtraction, it is set when the MSB needs a borrow
and there is no borrow from the MSB, or vice-versa.

iy Example 1 : Give the contents of the flag register after execution of following addition.
0110 0101 1101 000
40010 0011 0101 1001
1000 1001 0010 1010
Solution :5F = 1, ZF =0, PF=1,CF =0, AF=0,0F =1

iy Example 2 : Give the contents of the flag register after execution of follmwing subtraction

0110 0111 0010 1001
- 0011 0101 0100 1010
0011 0001 1101 1111
Solution :SF =0, ZF =0, PF =1, CF =0, AF =1, 0F =0
The three remaining flags are used to control certain operations of the processor.

1. Trap Flag (TF): One way to debug a program is to run the program one
- instruction at a time and see the contents of used registers and
memory variables after execution of every instruction. This
process is called ‘single stepping’ through a program. Trap flag is
used for single stepping through a program. If set, a trap is
executed after execution of each instruction, i.e. interrupt service
routine is executed which displays various registers and memory
variable contents on the display after execution of each
instruction. Thus programmer can easily frace and correct errors
in the program.

Microprocessors and Interfacing 2-9 Architecture of B086 Microprocessok!

2. Interrupt Flag (IF) : It is used to allow/prohibit the interruption of a program. If set, a
certain type of interrupt (a maskable interrupt) can be recognized
by the B0S6; otherwise, these interrupts are ignored.

3. Direction Flag (DF) :It is used with string instructions. If DF = 0, the string is
processed from its beginning with the first element having the
lowest address. Otherwise, the siring is processed from the high
address towards the low address.

2.4 Bus Operation

The B0B6 has a common address and data bus. The address and data are time
multiplexed, i.e. address and data appear on this bus at differént time intervals. Thus bus
is commonly known as multiplexed address and data bus. The multiplexed address and
data bus provides the most efficient use of pins on the processor while permitting the use
of a standard 4(-lead package. This multiplexed address and data bus has to be
demultiplexed externally with the use of latches and the ALE signal provided by 8086.
This bus can be buffered directly and used throughout the system with address latching
provided on memory and /0O modules or it can be demultiplexed at the processor with a
single set of address latches if a standard non-multiplexed bus is desired for the system.

The control operation of 8086 is different in two different modes : minimum mode and
maximum mode. The 8086 provides some signals which have different meanings in
minium mode and maximum mode. The minimum mode is used for a small systems with
a single processor and maximum mode is for medium size to large systems, which often
include two or more processors.

2.5 Memory Segmentation

Two types of memory organisations are commonly used. These are linear addressing
and segmented addressing. In linear addressing the entire memory space is available to
the processor in one linear array. In the segmented addressing, on the other hand, the
available memory space is divided into “chunks” called segments. Such a memory is
known as segmented memory. In 8086 system the available memory space is 1Mbytes.
This memory is divided into number of logical segments. Each segment is 64 K bytes in
size and addressed by one of the segment registers. The 16-bit contents of the segment
register gives the starting/base address of a particular segment, as shown in Fig. 2.7. To
address a specific memory location within a segment we need an offset address. The offset
address is also 16-bit wide and it is provided by one of the associated pointer or index
register. .

F Microprocassors and Interfacing 2-10 Architecture of 8088 Microprocessor

Pryvahes! Addrats

FFFFFH — I Y Highest address
TFFFFH | : —] =—— Top of extra segment
i = Ttk
E"II' ¥. 4. e ‘:
| ; J ’
Too00H —1- Extra segment base ES = T000H
= =

SFFFFH T - Top of stack segment

64 K]
S0000H 4 —| «— Stack ssgment base SS = 5000H
4485FH 1 — 4 Top of code segment

T R

E" l': I | ki

" i iy & ul
I4BADH —l— L =— Code sagmeni base CS = 34B8AH
— e

2FFFFH = =— Top of data segmant

T ' i

64 K :
20000H —l— - =— Bottom of data segment

Phy sical memory
Fig. 2.7 Memory segmentation

Rules for Memory Segmernitation

1. The four segments can overlap for small programs. In a minimum system all four

segments can start at the address 00000H.

2. The segment can begin/start at any memory address which is divisible by 16.

Advantages of Memory Segmentation

It allows the memory addressing capacity to be 1 Mbyte even though the address
associated with individual instruction is only 16-bit.

It allows instruction code, data, stack, and portion of program to be more than
64 KB long by using more than one code, data, stack segment, and extra segment.
It facilitates use of separate memory areas for program, data and stack.

It permits a program or its data to be put in different areas of memory, each time
the program is executed ie. program can be relocated which is very useful in
mulliprogramming.

Microprocessors and Interfacing 2-11 Architecture of B086 Microprocessor

Generation of 20-bit Address

To access a specific memory location from any segment we need 20-bit physical
address. The 8086 generates this address wsing the contents of segment register and the
offset register associated with it Let us see how B)86 access code byte within the code
segment.

We know that the CS5 register holds the base address of the code segment. The B086
provides an instruction pointer (IP) which holds the 16-bit address of the next code byte
within the code segment. The value contained in the IP is referred (0 as an offset. This
value must be offset from (added to) the segment base address in CS to produce the
required 20-bit physical address.

The contents of the C5 register are multiplied by 16. i.e. shifted by 4 position to the
left by inserting 4 zero bits and then the offset ie. the contents of IP register are added to
the shifted contents of CS to generate physical address. As shown in the Fig. 2.8, the
contents of C5 register are 38AH, therefore the shifted conbents of C5 register are
MBADH. When the BIU adds the offset of 4214H in the IP to this starting address, we get
3BAB4H as a 20-bit physical address of memory. This is illustrated in Fig. 2.8 (b).

Physical Addrosses

== Top of code sagmant s [aTalelalo = implied zero
A489FH i izl 14 (nbble)
P - 4 mro bils
Physical address L:?I- Bia|B|4
- Code byle JdaB4H
IF:d:IHHI
iC5 = J8aH = Sia of Code sagment
J48ADH
) =}

Fig. 2.8
We have seen that how 20-bit physical address is generated within the code segment.
In the similar way the 20-bit physical address is generated in the other segments.
However, it is important o note that each segment requires particular segment register
and offset register to generate 20-bit physical address.

Pointers and Index Registers

All segment registers are 16-bit. But it is necessary to put 20-bit address (physical
address) on the address bus. To get 20-bit physical address one more register is associabed
with each segment register the way IP is associated with C5.

These additional registers belong to the poinler and index group. The pointer and
index group consists of instruction pointer (IF), stack pointer (SF), BP (base pointer),
source index (SI) and destination index (DI} registers,

Microprocessors and Interfacing 2-12 Architecture of 8086 Microprocessor

Stack Pointer (SP) : The stack pointer (5P) register contains the 16-bit offset from the
start of the segment to the top of stack. For stack operation, physical address is produced
by adding the contents of stack pointer register to the segment base address in 55. To do
this the contents of the stack segment register are shifted four bits left and the contents of
SP are added to the shifted result. If the contents of SP are 9F20H and 55 are 4000H then
the physical address is calculated as follows. (Refer Fig. 2.9)

S5 = 4000H after shifting four bits left S5 = 40000H

Now
S5 40000H
+ SP 9F20H
Physical address 49F20H
ﬁ—.
=— End of stack segment 4FFFFH
— =— Top of stack 49F20H
SP = 9F20H
55 = 4000H =— Start of slack segment 40000H
F—H—-

Fig. 2.9 Stack and stack pointer
Base Pointer, Source Index and Destination Index (BP, S| and DI)

These three 16-bit registers can be used as general purpose registers. However, their
main use is to hold the 16-bit offset of the data word in one of the segments,

Base pointer : We can use the BP register instead of 5F for accessing the stack using
the based addressing mode. In this case, the 20-bit physical stack address is calculated
from BP and 55. Addressing modes are discussed in later section.

Source Index : Source index (SI) can be used to hold the offset of a data word in the
data segment. In this case, the 20-bit physical data address is calculated from 5l and D5.

Destination Index : The ES register points to the extra segment in which data is
stored. String insbruchons always use ES and DI to determined the 20-bit physical address
for the destination.

Default and Alternate Register Assignments

Table 2.1 shows that some memory references and their default and alternate segment
definitions. For example, instruction codes can only be stored in the code segment with IP
used as an offset. Similarly, for stack operations only 55 and SFP or BFP registers can be
used to give segment and offset addresses respectively. On the other hand, for accessing
general data, string source, data pointed by BX and BP registers; it is possible to use
alternate segments by using segment override prefix. See examples given after Table 2.1.

Microprocessors and Interfacing

2-13 Architecture of 8086 Microprocessor

Type of Memory Default Segment Alternate Ssgment Offset (Logical
Raferance Address)

Instruction fetch cs None P
Stack operation 55 Mone 5P, BP
General data DS CS, ES, 85 Effective address
String source DS CS, ES, 55 S
String destination ES None D
BX used as pointer Ds CS, ES, 88 Effective address
BP used as pointer S35 CS. ES, DS Effective address

Table 2.1 Default and alternate register assignments
For the following examples we have assumed

CS = 1000H, DS = 2000H, S5 = 3000H, ES = 4000H, BP = 0010 H,
BX = 0020H, 5F = 0030H, 51 = 0040H, DI = 0050H

Exampile 3 :
1) MOV AL, [BP]

aooo[0)H sS
o001 0O H BP

Physical Address 3001 0 H

+*

2) MOV CX, [BX]

2000[0]H DS
002 0 H BX

Physical Address 2002 0 H

+

3) MOV AL, [BP+SI]

001 0 H BP

+

D04 0 H Sl

Effective Address 005 0 H

sooo[0]H sS
005 0 H EA
Phiysical Address 3005 0 H

*

This instruction copies a byte from memory
location to the AL register. The effective address for
the memory location is contained in the BP register.
By default, an effective address is added to the stack
segment (S5) to produce the physical memory address
(30010 H).

This instruction copies a word from memory
location to the CX register. The effective address is
contained in the BX register. By default an effective
address is added to the data segment (DS) to
produce the physical memory address (20020 H).

This instruction copies a byte from memory location
to the AL register. The effective address is the
summation of the contents of the BF and Sl register.

The effective address is added to the stack
segment (S5) to get the physical address.

Microprocessors and Interfacing 2-14 Architecture of 8086 Microprocessor

4) MOV CS : [BX], AL

This instruction copies a byte from the AL register

1000[0]H ©8 to a memory location. The effective address for the

002 0 H BX memory location is contained in the BX register. By

Physical Address 1002 0 H default an effective address in BX will be added to the

data segment (DS) to produce the physical memory

address, In this instruction, the C5: in front of [BX]

indicates that we want BIU to add the effective address to the code segment (CS) to
produce the physical address. The C5: is called segment override prefix.

+

Segment Override Prefix

The segment override prefix allows the programmer to deviate from the default
segment. The segment override prefix is an-additional 8-bit code which is put in memory
before the code tor the rest of the instruction. This additional code selects the alternate
sepment register. The code byte for the segment override prefix as the format 001XX110.
The XX represents a 2 bits which are as follows : ES = 00, C5=01,55 = 10 and DS = 11. It
is important to note that the segment override prefix may be added to almost any
instruction in any memory addressing mode.

Review Questions

List the features of 8086 microprocessor.
Explain the archifecture of 8086 processor with the help of neat Wock diagram.
Whiat ¢ the furiction of bus inferfacing nnit ?

Wihat iz Hhe instruction quene 7 Explain ifs advanlage.

1.
2,
3
4
5. What 5 pipelining ?
B, Explain the register organisation of 8086,
7. What are segment registers 7 Explain the purpose of them.
8. Explain the purpose of pointers and index regishers,
9. What is the function of flag register 7
10, Hoaw physical address is generated in 8086 7
11. Dwaw the bit pattern for flag register of 5086 and explain the significance of each bit.
12. List the rules for memory segmentation.
13, What are the advantages of using memory seymentation ?
14, Wihat do you moan by idex registers 7

15. What are the functions of 51 ond DI registers 7

Qag

8086 Instruction Set and
Assembly Language Programming

3.1 Introduction

The 8086 instruction set includes equivalents of the 8085 instructions plus many new
ones. The new instructions contain operations such as signed /unsigned multiplication and
division, bit manipulation instructions, string instructions, and interrupt instructions.

The B08& has approximately 117 different instructions with about 300 opcodes. The
B0E6 instruction set contains no operand, single operand, and two operand instructions.
Except for string instructions which involve array operations, the 8086 instructions do not
permit memory o memory operations.

In this chapter we study the addressing modes, instruction set of 8086 and assembler
directives.

3.2 Addressing Modes

We have seen how the 8086 fetches code bytes from memory by generating 20-bit
physical address with the help of TP and C5. We have also seen how the 8086 accesses the
stack using S5 and SP. In this section we will see the different ways that an B0B6 can
access the data. The different ways that a processor can access data are referred to as
addressing modes.

The addressing modes of any processor can be broadly classified as :
 Dala addressing modes.

* Program memory addressing modes.

* Stack memory addressing modes.

3.2.1 Data Addressing Modes
The data addressing modes can be further classified as
1. Addressing modes for accessing immediate and register data (register and
immediate modes).
2. Addressing modes for accessing data in memory (memory modes).
3. Addressing modes for accessing [/0 ports (170 modes).

(3 - 1)

Microprocessors and Interfacing 3-2 B086 Instruction Set and ALP

Addressing Modes for Accessing Immediate and Register Data
1. Register Addressing Mode

This mode specities the source operand, destination operand, or both to be contained
in an 8086 register.

Direction of data flow

RO AL, BL AL BL

Destination register Source register

Note : Both souwrce and desfination oparands are in 8086 register

Examples :
MOV BX, CX ; Copies the 16-bit contents of CX into BX
MOV CL, BL ; Copies B-bit contents of BL into CL.

2, Immediate Addressing Mode

In an immediate mode, 8 or 16-bit data can be specified as a part of instruction.

) 1]
MOW AL, 20 H AL - Z0H
Destination operand Immediale dala
is a 8086 register as a source operand
15 1]
MOV AX, 1234 H A f—— 1234 H
Destination operand Immediate data
is & B0BG register a5 a Sounce operand

Hote : Ammow indicates direction of data flow

Examples :
MOV BL, 26H ; Copies the 8-bit data 26H into BL
MOV CX, 4567H ; Copies the 16-bit data 4567H into UX.

Microprocessors and Interfacing 3-3 8086 Instruction Set and ALP

Addressing Modes for Accessing Data in Memory

As mentioned before, the Execution Unit (EU) has direct access to all registers and
data for register and immediate operands. However, the EU cannot directly access the
memory operands, It must use the BIU segment registers to access memory operands. For
example, when the EU needs to access a memory location, it sends an offset value to the
BIU. This offset is also called the Effective Address (EA). Note that EA is displacement of
the desired location from the segment base. As mentioned before, the BIU generates a
20-bit physical address after shifting the contents of the desired segment register four bits
to the lett and then adding the 16-bit EA to it.

There are six ways to specify effective address (EA) in the instruction.

a, Direct addressing mode b. Register indirect addressing mode
¢. Based addressing mode d. Indexed addressing mode
e. Based indexed addressing mode f. String addressing mode.

1. Direct Addressing Mode :

In this mode, the 16-bit effective address (EA) is taken directly from the displacement
field of the instruction. The displacement (unsigned 16-bit or sign-extended 8-bit number)
is stored in the location following the instruction opcode.

Memaory
'_“-.-'_"\
AL
30H 1 43001H
MOV AL, [3000H] BOH |= BOH | 13000 H =—
¥
10000H+3000H
DS 1000 |"Bs . (10n)+3000H
Mamaory
-r—\-q._-___
I - 10 |13001H
mov (300oH),cx | 10 | 20 A 20 | 130001 =—
CH CL 12FFFH
i)
CX B,
10000 H +3000 H
DS| 1000 ["pse(10 Hp3000 H

Mote ; 1. Assume DS = 1000
:. Physical address = DS «(10H)+ 3000H
= 1000[0}+ 3000H = 13000H
2. Arrow indicales direction of data flow.

Microprocessors and Interfacing 3-4 8086 Instruction Set and ALP
Example :
MOV CL, [9823H] ; This instruction will copy the contents of the
; memory location, at a displacement of 9823H from the
; data segment base, into the CL register. Here, 9823H is
i the effective address (EA) which is written
; directly in the instruction.

2. Register Indirect Addrzising Mode

In this mode, the EA is specified in either a pointer register or an index register. The
pointer register can be either base register BX or base pointer register BP and index
register can be either Source Index (SI) register or Destination Index (D) register. The
20-bit physical address is computed using DS and EA.

Memory
--—"'.-'-‘--I-..|I
i 20 1120001H
MOV BX, (CX) 20 30 30 |12000H =-—
BH BL 11FFFH
—
BX T
Ds 1000H
12000H
Physical address
CX 2000H
Example :
1. MOV [DI], BX ; The instruction copies the 16-bit contents of BX into a

; memory location offset by the value of EA specified in DI
; from the current contents in DS. Now, if [DS] = T205H,

; [D1] = 0030H, and [BX] = 8765H, then after MOV [DI], BX,
: content of BX (8765H) is copied to memory locations

; T2080H and 72081H.

Microprocessors and Interfacing 3-5 8086 Instruction Set and ALP

2. MOV DL, |BP] ; This instruction copies the 8-bit
; comtents in DL from the memory location offset by the
; value of EA specified in BP from the contents of 55.
; Because data addressed by BP are by default located in
; stack segment (55).

3. Base-Plus-Index-Addressing :

Base-plus-index addressing is similar to indirect addressing because it indirectly
addresses memory data. This addressing uses one base register (B or BX), and one index
register (DI or SI) to indirectly address memory. The base register often holds the
beginning location of a memory array, while the index register holds the relative position
of an element in the array. Remember that whenever BP addresses the memory data, the
contents of stack segment, BF and index register are used to generate physical address.

Locating Data with Base-Pulse-Index Addressing :

Memory
MOV CX, (BX+DI1) T —
+ 10H 12031H
10H 40H = 40H 12030H =—
CH CL
—
—"
Cx

1000[H
DS 1000H IMps (10m)
L 120004~ 12030H
ex [20000 2200
DI | 2000H

Locating Array Data Using Base-Plus-Index Addressing :

A main use of the base-plus-index addressing mode is to address elements in a
memory array. Suppose that the array is located in the data segment beginning from
memory location ARRAY. To access a particular element within the array we have to load
the BX register (base) with the beginning address of the array, and the DI register (index)
with the element number to be accessed. This is illustrated in Fig. 3.1.

Microprocessors and Interfacing -6 BOEG Instruction Set and ALP
BACY ON, (BX-Di r""“--..____
Y JH

CH CL

05 | Segmant hase

|

40H AR RLATY +E ey

Element

BX | ARRAY hasze

Fig. 3.1

4. Register Relative Addressing :

ARRAY + DI

bz

Register relative addressing is similar to base-plus-index addressing. Here, the data in
a segment of memory are addressed by adding the displacement to the contents of a base
or an index register (BP, BX, DI or SI). Remember that displacement should be added to
the register within the [|. This is illustrated in the Fig. 3.2. Displacement can be any 8-bit

or 16-hit number.

MOV CX, [BX + DO03H] or MOV CX, [BX +3]

i""-lh_____
' 10H 1810041
10H 20H = 20H |B1003H —-—
CH cL G1002H
l-_‘,_l
oX e
EDDDEH -
05 | 6000H DS = (10 H) T
BX 1000H 1000H Py 1003H
Base T Displacemeant

03H
Fig. 3.2

Microprocessors and Interfacing 3-7 BO86 Instruction Set and ALP

Note :
* Dhsplacement can be subtracted from the register : MOV AL, |DI1-2].

* Displacement can be an offset address appended to the front of the [| :
MOV AL, OFF_ADD [DI + 4].

Example : MOV AL, LAST [51 + 2] ; This instrucon copies the contents of the 20-bil
address computed from the displacement LAST, 51 + 2 and DS into Al

Addressing Array Data with Register Relative :

The Fig. 3.3 shows how to address data element within the array with register relative
addressing.

MOV CX. ARRAY (Di) T~

1 30H ARRAY +6
30H 4A0H |- 40H ARRAY+5 =ty
CH CL ARRAY+4
l._,ﬂ,_.!
Cx ARRAY+3 DI| Element |Index
ARRAY+2
ARRAY +1
ARRAY
™
Dg | Segmenl base T
ARRAY
Displacement in the
segment register
Fig. 3.3

5. Base Relative Plus Index Addressing :

The base relative plus index addressing mode is similar to the base plus index
addressing mode, but it adds a displacement, besides using a base register and an index
register to generate a physical address of the memory. This addressing mode is suitable to
address data within the two dimensional array.

Microprocessors and Interfacing 3-8 8086 Instruction Set and ALP
Addressing Data with Base Relative Plus index :

The Fig, 34 shows how data can be accessed with base relative plus index addressing
mode,

MAOA AL [BX + 51 + 10H)
e

AL S0 S0H

20310M

"-—-"'.-_

D300H O310M

gx | o0100H {*) ?— ¢
‘ 'ILIiH

Sl [l

ps | zoooH SI000H
DS = (10H)

Fig. 3.4
Addressing Arrays with Base Relative-Plus-Index :

As mentioned earlier this addressing mode is useful in addressing two dimensional
array. Two dimensional array usually stores records. For example, student record such as
its name, roll no etc. Therefore, each record containg number of data elements. To access
data element from a particular record we use base register to hold the beginning address
of the array of records, index register to point a particular record in the array of records
and displacement to point a particular element in the record. This is illustrated in Fig. 3.5.

-(+)

#'_-'--.-‘-___.
2
I
1 Rascna]
AL 2 ‘ﬁ
1 Displacemant
= =¥ .
B ome I ol
o]
-]
g Rrscard+ 1 . sl
1
u w‘ﬂ il
e
(511
W
Bx

Fig. 3.5

Microprocessors and Interfacing 3-9 8086 Instruction Set and ALP

. Stri.ng Add.rtuing Mode :

This mode uses index registers. The string instructions automatically assume 51 to
point to the first byte or word of the source operand and DI to point to the first byte or
word of the destination operand. The contents of S1 and DI are automatically incremented
(by clearing DF to 0 by CLD instruction) or decremented (by setting DF to 1 by 5TD
instruction) to point to the next byte or word. The segment register for the source is DS.
The segment register for the destination must be ES.

Example :
MOWVS BYTE ; If [DF] = 0, [DS] = 3000H, [SI] = 0600H, [ES] =5000H,
: [D1] = 0400H, [30600H] = 38H, and [S0400H] = 45H, then
; after execution of the MOVS BYTE, [50400H] = 38H,
: |51] = 0601H, and [DI] = 401H.

Addressing Modes for Accessing IO Ports ('O Modes)

Standard 1/0 devices uses port addressing modes. For memory-mapped 1/0, .ie&mr_f
addressing modes are used. There are two types ol port addressing modes : direct and
indirect.

In direct port mode, the port number is an 8-bit immediate operand. This allows Fxed
access to ports numbered 0 to 255.

Example :
OUT 05H, AL : Sends the contenis of AL to 8-bit port 05H.
IN AX, B0H ; Copies 16-bit contents of port 50H

In indirect port mode, the port number is taken from DX allowing 64K 8-bit ports or
2K 16-bit ports.

Example :
IN AL, DX ; If [DX] = 7890H, then it copies B-bit content of port 7890H
; into AL.
IN AX, DX : Copies the B-bit contents of ports 7890H and 7891H into AL

:and AH, respeclively.
Note : The 8-bil and 16-bit /O transfers must take place via AL and AX, respectively.

3.2.2 Program Memory Addressing Modes

JMP {Jump) and CALL instructions use program memory addressing modes. These
instruction have three distinct forms : direct, relative and indirect. Let us see these forms
and corresponding addressing modes.

Microprocessors and Interfacing 3-10 8086 Instruction Set and ALP

Direct program memory addressing :

In this addressing mode address where to transfer program control is specified within
the instruction alongwith the opcode. The Fig. 3.6 shows the direct intersegment JMFP
instruction and the four bytes required to store the address 20000H. This JMP instruction
loads CS with 2000H and [P with 0000H to jump to memory location 20000H for the next
instruction. An intersegment jump is a jump where destination location is from a different
segment; it can be any memory location within the entire memory locations. Therefore,
intersection jump is also known as far jump.

Opoode Offset (low) Ofsel (high) Segment (low) Segment (high)

JMP 2000H EA 0o 0o 0o 00

Fig. 3.6
Like JMP instruction, CALL instruction also uses direct program addressing with
intersegment or far CALL instruction. Usually, in both instructions (JMP or CALL) the
name of a memory address, called a label is specified in the instruction instead of address.

Relative program memory addressing :

In this addressing mode, the term relative is restricted to instruction pointer (IF). For
example, if a JMP instruction skips the next 5 bytes of memory, the address in relation to
the instruction pointer is a 5 that adds to the instruction pointer. This generates the
address of the next program instruction. This is illustrated in Fig. 3.7.

Opcode
20000 H Eﬂ/

JMP [05]

20001 H 03
20002 H
20003 H
20004 H
20005 H
20006 H
20007 H
20008 H

Fig. 3.7

It is important to note that in JMP instruction, opcode takes one byvte and displacement
may take one or two byte. When displacement is one byte (8-bit), it is called short jump.
When displacement is two byte (16-bit), it is called near jump. In both (short and near)
cases only contents of IP register are modified; contents of C5 register are not modified.
Such jumps are called intrasegment jumps because il.ll'.l!'IFl!'i are within the current code
segment.

The relative JMI' and CALL instructions can have either an 8-bit or a 16-bit signed
displacement that allows a forward memory reference or a reverse memory reference.

Microprocessors and Interfacing 3-N" 8086 Instruction Set and ALP

Indirect program memory addressing :

The 8086 allows several forms of program indirect memory addressing for the JMP
and CALL instructions. In this addressing mode, it is possible to use any 16-bit register
(AX, BX, CX, DX, 5P, BF, DI or SI); any relative register {[BP], [BX], [DI], or [S1]); and any
relative register with displacement to specify the jump address. This is illustrated in
Table 3.1.

Instruction Operation
JMF BX Jumps o memony location addressed by BX within current code
sagment,
P+ BX
JMP NEAR PTR [BX] Jumps o memany location addressed by the contents of the data
sagment memaory location addressed by BX within the cumment code
sagment

P ([BX+ 1] [BX])
High byte Low bwvie
JMP MEAR PTR [DI + 2] Jumps o mamory location addressed by the contents of he data

segment memory kocation addressed by DM plus 2 within the curment
code segment.

IF o ([DI+ 3. [DI+ 2]
High byte Low byte
JMP ARRAY [BX) Jumps o memory location addressed by the contents of the data

segment memory location addressed by ARRAY plus BX with the
current code segment.

IP « ([ARRAY + BX + 1), [ARRAY + BX])
High byte Low byte

Table 3.1

3.2.3 Stack Memory Addressing Modes

The stack is a portion of read/write memory set aside by the user for the purpose of
storing information temporarilv. When the information is written on the stack, the
operation is called PUSH. When the information is read from stack, the operation is called
a POP.

The microprocessor stores the informabion, much like stacking plates. Using this
analogy of stacking plates it is easy to illustrate the stack operation.

Fig. 3.8 shows the stacked plates. Here, we realize
that if it is desired to take out the first stacked plate we
will have to remove all plates above the first plate in the
reverse order. This means that to remove first plate we
will have to remove the third plate, then the second

Fig. 3.8 Stacked plates plate and finally the first plate. This means that, the first
information pushed on to the stack is the last

information popped off from the stack. This type of operation is known as a first in, last
out (FILO). This stack is implemented with the help of special memory pointer register.

3
2

Microprocessors and Interfacing 3-12 8086 Instruction Set and ALP

The FiFI'."E'iH.l];.'ruinh.rr register is called the stack Pl.'li-l'lt-ET- I'..'l'uring PUSH and POP {J-Pﬂr.‘ll:il.'m,
stack pointer register gives the address of memory where the information is to be stored
or to be read. The stack pointer’s contents are automatically manipulated to point to stack
top. The memory location currently pointed by stack pointer is called top of stack.

Stack Structure of BOBG/BB

The B086/88 has a special 16-bit register, SP to work as a stack pointer. The stack
pointer (SP) register contains the 16-bit offset from the start of the segment to the top of
stack. For stack operation, physical address is produced by adding the contents of stack
pointer register to the segment base address in 55. To do this the contents of the stack
segment register are shifted four bits left and the contents of SP are added to the shifted
result. If the contents of 5P are 9F20H and 55 are 4000H then the physical address is
caleulated as follows. (Refer Fig. 3.9)

55 = 4000H after shithing four bits left 55 = 40000H

Now
55 40000H
+ 5P 9F20H
FPhysical address 49F20H
e
) End of stack segment 4FFFFH
— = Top of stack 49F20H
SP = 9F20H
55 = 4000H = Slart of stack segment 40000H
=

Fig. 3.9 Stack and stack pointer
PUSH and POP Operations

Temporarily stores the contents of 16-bit register or memory location or program status
word, and retricves when required. When programmer realizes the shortage of the
registers, he stores the present conlents of the registers in the stack with the help of PUSH
instruction and then uses the registers for other funchon. After completion of other
function programmer loads the previous contents of the register from the stack with the
help of POP instruction.

PUSH Operation :

The PUSH instruction decrements stack pointer by two and copies a word from some
source to the location in the stack where the stack pointer points. Here the source must be
a word (16 bit). The source of the word can be a general purpose register, a segment
register or memory. The Fig. 3.10 shows the map of the stack before and after execution of
PUSH AX and PUSH CX instructions,

Microprocessors and Interfacing 3-13 8086 Instruction Set and ALP

cx AX | 4455H |
End al stack segmenl End al stack segmant
SP|FFFFr | = =— SFFFFH E“@:‘"‘] = IFFFFH
#FFFEH 44 H 4FFFEH
4FFFDH S5 H AFFFDH
AFFFCH 12H 4FFFCH
4FFFBH SP|FFFEH |~—= 34 H 4AFFFRH == Tap of slack
AFFFAH AFFFAH
E E.3] =
40003H 40003
4000FH &0002H
40001H $0001H
55 | 4000H | —= =— Siart af stack segment 55| 4000H |—= = Start of siack segment
40000H AD0DH
e b=
(8} Befors sxecution (k) &fter smecution of FUSH AX and PUSH CX
Fig. 3.10
POP Operation :

The PO instruction copies a word from the stack location pointed by the stack pointer
to the destination. The destination can be a general purpose regisher, a segment mgiﬁter, OfF
a memory location. After the word is copied to the specified destination, the stack pointer
is automatically incremented by 2. The Fig. 3.11 shows the map of the stack before and
after execution of POP DX and POP BX instructions,

Bx | | Dx] | B[4455 | D] 12344 |
m %‘
End of slack segmant End of stack segmant 4FFFFH
=— 4FFFFH 5P [FFFFH]—= =— Top of slack
44 H 4FFFEH 44 H 4FFFEH
S5H 4FFFOH 55 H AFFFOH
12H AFFFCH 12 H AFFFCH
EP|FFFBH|—= MH 4FFFBH =— Top of stack 3 H 4FFFBH
SFFEAH AFFFAM
= = =
SOO0EH S0003H
S0002H S0OD2H
SO001H S0001H
56 [4000 | —e=| ~— Saart of stack segment 55 [4000H]—= == Starl of stack segment
AD000H SO000H
L—l-l"..-‘ I-i.-l.""-'-._-“
{a] Betore execution (b} After sxscition of PUSH AX snd PUSH CX
Fig. 3.11
CALL Operation

The CALL instruction is used to transfer execution to a subprogram or procedure.
There are two basic types of CALLs, near and far. A near CALL is a call to a procedure
which is in the same code segment as the CALL instruction. When the 8086 executes a

Microprocessors and Interfacing 3-14 8086 Instruction Set and ALP

near CALL instruction it decrements the stack pointer by two and copies the offset of the
next instruction after the CALL on the stack. It loads IP with the offset of the first
instruction of the procedure in same segment.

A far CALL is a call o a procedure which is in a different segment from that which
contains the CALL instruction. When the 8086 executes a far CALL it decrements the stack
pointer by two and copies the contents of the C5 register to the stack. It then decrements
the stack pointer by two again and copies the offset of the instruction after the CALL to
the stack. "inally, it loads CS with the segment base of the segment which contains the
procedure and [P with the offset of the first instruction of the procedure in that segment.

RET Operation

The RET instruction will retum execution from a procedure to the next instruction
after the CALL mnstruction in the calling program. If the procedure is a near procedure (in
the same code segment as the CALL instruction), then the return will be done by replacing
the instruction pointer with a word from the top of the stack.

If the procedure 15 a far procedure (in a different code segment from the CALL
mskruction which calls it), then the instruction pointer will be replaced by the word at the
top of the stack. The stack pointer will then be incremented by two. The code segment
register is then replaced with a word from the new top of the stack. After the code
segment word is popped off the stack, the stack pointer is again incremented by two.

These words/word are the offset of the next instruction after the CALL. So 8086 will fetch
the next instruction after the CALL

Overflow and Underflow of Stack

We have seen the PUSH operation. During this operation stack pointer is decremented
by two. We know that maximum length of stack segment is 64K. If we go on performing
PUSH woperations successively, at one Hime the contents of 51" will be 0000H. Any further
attempt to PUSH data on the stack will result in stack overflow.

On the other hand, if we go on performing POFP operabions successively, at one time
the contents of SP will be FFFFH. Any further attempt to POP data from the stack will
result in stack underflow.

3.3 Instruction Set of 8086/8088
The instruction set of the 8086 is divided into Eight major groups as follows :
o Data Movement Instructions
¢ Arithmetic and Logic Instructions
Siring Instructions and
Program Control Transfer Instructions
* lteration Control Instruchions

s Processor Control Instructions

Microprocessors and Interfacing 3-15

8086 Instruction Set and ALP

FExbernal Hardware S?nr:hrﬁn:izut:iﬂn Instructions

* Interrupt Instructions

3.4 Data Movement Instructions
The data movement instructions can be classified as
+ MOV instructions to transfer byte or word.
¢ PLSH/POP instructions.
* Load effective address instructions.
+ Siring data transfer instructions.

o Miscellaneous data transfer instructions.

3.41 MOV Instruction

It is a general purpose instruction to transter byte or word from register lo register,

register o memory or from memory to register.

MOV destination, source

The MOV instruction copies a word or a byle of data from some source o a
destination. The destination can be a register or a memory location. The source can be a
register, a memory location, or an immediate number. The source and destination in an
instruction can’t both be memory locations. The source and destination in a MOV
instruction must be of same type i.e. either both must be byte or word.

MOV instruction does not affect any flags.

Examples :

MOV BX, 592FH ; Load the immediate number 592FH in BX

MOV CL, [357AH] ; Copy the contents of memory location, at a
; displacement of 357AH from data segment base,
; into the CL register.

MOV [734AH], BX ; Copy the contents of BX register to two memory
; locations in the data segment. Copy the contents
; of BL register to memory location at a
; displacement of VMAH and BH register
; to memory location at a displacement of
; 7MBH.

MOV Ds, CX ; Copy word from CX register to data

; segment register.

MOV TOTAL [BP], AX ; Copy AX to two memory locations. AL to
; first location, AH to second. Effective
; address, EA, is the sum of displacement

Microprocessors and Interfacing 3-16 8086 Instruction Set and ALP

: represented by TOTAL and contents of BP.
: F‘h}'-{u:al address = EA + 55,
MOV C5 : TOTAL [BP], AX ; Same as above instruction, but physical
; address = EA+CS. Because the segment
; overide prefix is CS.

3.4.2 PUSH/POP Instructions

These instruct wns are used to load or receive data from the stack memory.

PUSH source

The PUSH instruction decrements stack pointer by two and copies a word from some
source to the location in the stack where the stack pointer points. Here the source must be
a word (16bit). The source of the word can be a general purpose register, a segment
register or memory.

It is important to note that whenever data is pushed onto the stack, the first (most
significant) data byte moves into the stack segment memory location addressed by SP-1.
The second (least significant) data byte moves into the stack segment memory location
addressed by SP-2.

Examples :
1. PUSH CX ; Decrements SP by 2, copy CX to stack
The Fig. 3.12 shows the execution of PUSH CX instruction.
Memory
stack segment

.-"_"--....___l____"

CX

Microprocessors and Interfacing 3-17 BOB6 Instruction Set and ALP

Note : After execution of installation SP = 0032 H and it is indicated by dotiad

arrow.,
2. PUSH Ds ; Decrement SP by 2, copy DS to stack
3. PUSH NEXT [BX] ; Decrement 5P by 2, copy a word from memory in

: DS (ie. PA = EA + DS) to stack with
; EA = NEXT + |BX]
PUSHF

Puts the tlag register contents on the stack. Whenever this instruction is executed, the
most significant byte of flag register moves into the stack segment memory location
addressed by SP-1. The least significant byte of flag register moves into the stack segment
memory location addressed by SP-2.

POP destination

The POP instruction copies a word from the stack location pointed by the stack pointer
to the destination. The destination can be a general purpose register, a segment register, or
a memory location. After the word is copied to the specified destination, the stack pointer
is automatically incremented by 2. Whenever data is removed from the stack, the byte
from the stack segment memory location addressed by SP moves into the most significant
byte of the destination register and the byte from the stack segment memory location
addressed by SP + 1 moves into the least significant byte of the destination register.

Examples :
1. POPCX ; Copy a word from top of stack
o OX and increment SP I:t}-' 2
The Fig. 3.13 shows the execution of POP CX instruction.

.-r"'_‘--.._______‘,

I0D45H

044H =- - -

i 40 I0043H E

[40| 50 50 0042H -——
H 30041
Cx 30040H

Fig. 3.13

Microprocessors and Interfacing 3-18 8086 Instruction Set and ALP

MNote : After execution of instrocton SP = (044H and it 15 indicated h:,r dotted arrow.

2. POPDs ; Copy a word from top of stack
; to DS and increment SP by 2.
3 POP NEXT [BX] ; Copy a word from top of stack to memory in D5

: {i.e. PA = EA + DS) with EA = NEXT + |BX], and
; increment 5P by L
Note : POP C5 is illegal.

POPF

Removes the word from top of stack to the flag register. Whenever this instruction is
executed, the byte from the stack segment memory location addressed by 5P moves into
the most significant byte of the flag register and the byte from the stack segment memory
location addressed by 5P+1 moves into the least significant byte of the flag register.

Initializing the stack

Before going to use any instruction which uses stack for its operation we have
initialize stack segment, and we have reverse the memory area required for the stack. The
stack can be initialized by including following sequence of instructions in the program.

METHOD 1 :
ASSUME G5 : CODE, DS : DATA, 55 : STACK

STACK SEGMENT

S_DATA DB 100 DUP (7)

STACK ENDS

MNote : Maiter fyped in Bold letters is included to initialize stack. This program
sequence reserves 100 bytes for the stack operation.
METHOD 2 :

Syntax : - Stack [size]

Example : - Stack 100

The - stack is a directive, which provides shortcut in definition of the stack segment.
The default size is 1024 bytes. The instruction - stack 100 reserves 100 bytes for the stack

operation.

3.4.3 Load Effective Address
The load effective address group includes following instructions.
« LEA

Microprocessors and Interfacing 3-19 8086 Instruction Set and ALP

= LDS
« LES

LEA Instruction : Load Effective Address : LEA register, source

This instruction determines the offset of the variable or memory location named as the
source and loads this address in the specified 16-bit register. Flags are not affected by LEA
instruction.

Examples :
LEA CX, TOTAL ; Load CX with offset of TOTAL in DS.
LEA BP, 55 : STACK_TOP ; Load BP with offset of STACK_TOP in 55.
LEA AX, [BX] [D1] : Load AX with EA = [BX] + [DI]

LDS Instruction : Load register and D5 with words from memory. LDS register,
memory address of first word.

This instruction copies a word from two memory locations into the register specified in
the instruction. It then copies a word from the next two memory locations into the DS
register.

Examples :
LDs CX, [391AH] ; Copy contents of memory at displacement of
; 391AH and 391BH to CX. Then copy contents at
; displacement of 391CH and 391DH in DS,
LES Instruction : Load register and ES with words from memory. LES register, memory
address of first word.
This instruction loads new values into the specified register and into the ES register

from four successive memory locations. The word from the first two memory location is
copied into the specified register and the word from the next two memory locations is

copied into the ES register.
Example :
LES CX, [3483H] ; Copy contents of memory at displacement of 3483H0
; i DS to CL, contents of 3484H in DS to CH and
: copy the contents of memory at displacement of
; M85H and 3486H in DS to ES register.

3.4.4 String Data Transfer Instructions
MOVS/MOVSB/MOVSW

These instructions copy a byte or word from a location in the data segment to a
location in the extra segment. The offset of the source byte or word in the data segment
must be in the SI register. The offset of the destination in the extra segment must be
contained in the DI register. For multiple byte or multiple word moves the number of
elements to be moved is put in the CX register so that it can function as a counter. After
the byte or word is moved SI and DI are automatically adjusted to point to the next source

Microprocessors and Interfacing 3-20 8086 Instruction Set and ALP

and the next destination. If the direction flag is 0, then Sl and [will be incremented by 1
after a byte move and they will incremented by 2 after a word move. If the DF is a 1, then

Sl and DI will be decremented by 1 after a byte move and they will be decremented by 2
after a word move. MOVS affects no tlags.

The way to tell the assembler whether to code the instruction for a byte or word move
is o add a “BY or a "W to the MOVS mnemonic. MOVSB, for example, says move a
string as bytes. MOVSW says move a string as words.

Examples :
CLD ; Clear Direction Flag to autoincrement 51 and DI
MOV AX, DOOOH
MOV DS, AX : Initialize data segment register to 0
MOV ES, AX ; Initialize extra segment register to 0
MOV 51, 2000H ; Load offset of start of source string into Sl
MOV DI, 2400H ; Load offset of start of destination into DI
MOV CX, 4H ; Load length of string in CX as counter
REP MOVSB ; Decrement CX and MOVSB until CX will be 0.

After move SI will be one greater than offset of last byte in source string. DI will be
one greater than offset of last byte of destination string. CX will be 0.

REF is a prefix which is written before MOVSB to repeat execution of it until CX =0
REP/REPE/REP2/REPNE/REPNZ Prefix

REP is a prefix which is written before one of the string instructions. These
instructions repeat until specified condition exists.

Instruction Code Condition for Exit

REP Cx=0

REPE/REPZ CX=0arZF =0

REPHE/REPNZ CX=0orZF =1
Examples :

REFZ CMP 5B ; Compare string bytes until CX = 0
; or until string bytes not equal.

LODS/LODSB/ILODSW

This instruction copies a byte from a string location pointed to by Sl to AL, or a word
from a string location pointed to by SI to AX. LODS does not affect any flags. LODSB
copies byte and LODSW copies a word.

Microprocessors and Interfacing 3- 8086 Instruction Set and ALP

Examples :
CLD ; Clear direction flag so 5l is autoincremented
MOV 51, OFFSET 5_STRING : Point S at string
LODS S_STRING.

STOS/STOSB/ISTOSW

The STOS instruction copies a byte from AL or a word from AX to a memory location
in the extra segment. DI is used to hold the offset of the memory location in the extra
segment. After the copy, DI is automatically incremented or decremented to point to the
next slring element in memory. If the direction flag, DF, is cleared, then DI will
automatically be incremented by one for a byte siring or incremented by two for a word
string. If the direction flag is set, DI will be automatically decremented by one for a byte
string or decremented by two for a word string. STOS does not affect any flags. STOSB
copies byte and STOSW copies a word.

Examples :
MOV DI, OFFSET D_STRING ; Point DI at destination string
STOS D _STRING ; Assembler uses string name o determine
; whether string is of type byte or' type word.
; If byte string, then string byte replaced
; with contents of AL. If word string, then
; string word replaced with contents of AX.
MOV DI, OFFSET D_STRIMNG ; Point DI at destination string
STOSB ; “B” added to STOS mnemonic directly

; tells assembler to replace byte in string with byte from

; AL. STOSW would tell assembler directly to replace a
; word in the string with a word from AX.

3.4.5 Miscellaneous Data Transfer Instructions
This group consists of following instructions.
s XCHG
* LAHF
» SAHF
s XLAT
s« IN and OUT

Microprocessors and Interfacing 3-22 B086 Instruction Set and ALP

XCHG Instruction : XCHG destination, source.

The XCHG instruction exchanges the contents of a register with the contents of another
register or the contents of a register with the contents of a memory location(s). The
instruction cannot exchange the contents of two memory locations. The source and
destination both must be words or bytes. The segment registers can’t be used in these
instructions.

Examples :
XCHG BX, CX ; Exchange word in BX with word in CX.
XCHG AL, CL ; Exchange byte in AL with byte in CL.
XCHG AL, SUM |BX] ; Exchange byte in AL with byte in memory at

; EA = SUM + [BX]. PA = EA + DS,

LAHF Instruction : ' Load lower byte of flag register in AH.

This instruction copies the contents of lower byte of B086 flag register to AH register.
SAHF Instruction : Copy AH register to low byte of flag register.

The contents of the AH register are copied into the lower byte of the 8086 flag register.
XLAT Instruction : Translate byte in AL,

The XLAT instruction replaces a byte in the AL register with a byte from a lookup
table in memory. BX register stores the offset of the starting address of the lookup table

and AL register stores the byte number from the lookup table. This instruction copies byte
from address pointed by [BX + AL] back into AL.

IN and OUT Instructions
IN Instruction : Input a byte or word from port.

The IN instruction will copy data from a port to the accumulator. If an 8-bit port is
read, the data will go to AL and if an 16-bit port is read the data will goto AX.

The IN instruction can be executed in two different addressing modes,
1. Direct : In direct addressing mode 8-bit address of the port is a part of the

instruction.
Examples :
IN AL, OF8H ; Copy a byte from port 0F8H to AL.
IN AX, 95H ; Copy a word from port 95H to AX.

2. Indirect : In indirect addressing, the address of the port is referred from DX
register. Since DX is a 16-bit register, the port address can be any number between
O000H to FFFFH. Therefore it is possible address to upto 65,536 ports in this mode.

Microprocessors and Interfacing 3-23 B086 Instruction Set and ALP

Examples :
MOV DX, 30F8H ; Load 16-bit address of the port in DX.
IN AL, DX ; Copy a byte from 8-bit port 30F8H to AL.
IN AX, DX ; Copy a word from 16-bit port 30F8H to AX.

OUT Instruction : Send a h}'ha or word to a port.

The OUT instruction copies a byte from AL or a word from AX to the specified port.
The OUT instruction can be executed in two different addressing modes.
. Direct : In direct addressing mode B8-bit address of the port is a part of the

instruction.
Examples :
OUT OF8H, AL ; Copy contents of AL to 8 bit port OFSH.
OUT OFBH, AX ; Copy contents of AX to 16-bit port OFBH.

2. Indirect : In indirect addressing, the address of the port is referred from DX
register. It has advantage of accessing 2'" i.e. 65536 ports as mentioned earlier.

Examples :
MOV DX, 30F8H ; Load 16-bit address of the port in DX,
OUT DX, AL ; Copy the contents of AL to port 30F8H.
OUT DX, AX ; Copy the contents of AX to port 30F8H.

3.5 Arithmetic and Logic Instructions
The arithmetic and logic group of instructions include
* Additon instructions
* Subtraction instructions
¢ Multiplication instructions
* Division
BCD and ASCII arithmetic instructions
* Comparison
* Basic logic instructions - AND, OR NOT, XOR
» Shift and rotate instructions

3.5.1 Addition
This group of instructions consist of following instructions
+ ADD : Addition
* ADC : Addition with carry
o [NC : Increment (Add 1)

Microprocessors and Interfacing 3-24 8086 Instruction Set and ALP

ADD/ADC Instruction : ADD destination, source / ADC destination, source.

These instructions add a number from source to a number from destination and put
the result in the destination. The ADC, instruction also adds the status of carry flag into
the result. The source may be an immediate number, a register, or a memory location. The
source and the destination in an instruction cannot both be memory locations. The source
and destination both must be a word or byte. If you want to add a byte to a word, you
must copy e b:,rhz to a word loecabon and fill the upper b}rte of the word with zeroes
before adding.

Flags affected : AF, CF, OF, PF, SF, ZF.

Examples :
ADD AL, OFOH ; Add immediate number 0F0H to contents of AL.
ADC DL, CL : Add contents of CL to contents of DL with carry
; and store result in DL ie. DL « DL + CL + CY
ADC DX, BX ; Add contents of BX to contents of DX with carry
; and store result in DX e DX « DX 4+ BX 4 CY
ADD CL, TOTAL [BX] : Add byte from effective address
; TOTAL [BX] to contents of CL
ADD CX, TOTAL [BX] ; Add word from effective address

; TOTAL [BX] to contents of CX.
INC Instruction : Increment destination.

The INC instruction adds 1 to the specified destination. The destination may be a
register or memory location. The AF, OF, PF, 5F and ZF flags are affected.

Examples :
INC AL ; Add 1 to contents of AL.
IMNC BX ; Add 1 to contents of BX.

MNOTE : The carry flag CF is not affected.
If contents of B-bit register are FFH and 16-bit register are FFFFH, after INC instruction
contents of registers will be zero without affecting carry flag.
INC BYTE PTR [BX] ; Increment byte at offset of BX in DS.
; BYTE PTR directive indicates to the assembler
; that the byte from memory is to be incremented.
INC WORD PTR [BX] ; Increment word at offset of BX in DS.
; WORD PTR directive indicates to the assembler
; that the word from memory is to be incremented.

Microprocessors and Interfacing 3-25 B0B6 Instruction Set and ALP

3.5.2 Subtraction
This group of instructions consist of following group of instructions.
s SUB : Subtraction

5SBB : Subtrachon with borrow
s DEC : Decrement (subtract 1)

» NEG:2% mmplemunt of a number
SUB/SBB Instruction : SUB destination, Source.

SBE destination, Source.

These instructions subtract the number in the source from the number in the
destination and put result in the destination. The SBB, instruction also subtracts the status
of carry flag from the result. The source may be an immediate number, a register, or a
memory location. The destination may be a register or a memory location. The source and
the destination both cannot be memory locations. The source and destination both must be
word or byte. If you want to subtract a byte from a word, you must copy the byte to a
word location and fill the upper byte of the word with zeroes before subtracting.

Flags affected : AF, CF, OF, PF, 5F, and ZF.

Examples :
SUB AL, OFOH ; Subtract immediate number 0FOH
; from contents of AL store result in AL
SBB DL, CL : Subtract contents of CL and status of carry flag

; from the contents of DL and store result in DL.
;ie. DL« DL-CL-CY
SBB DX, BX ; Subtract contents of BX and status of carry
: Alag from the DX and store result in DX.
;Le. DX « DX - BX - CY

SUB CL, TOTAL [BX] ; Subtract byte from effective address TOTAL [BX]
: from the contents of CL and store result in CL
SUB CX, TOTAL [BX] : Subtract word from effective address TOTAL [BX]

: from the contents of CX and store result in CX.
DEC Instruction : Decrement destination.

The DEC instruction subtract 1 from the specified destination. The destination may be
a register or a memory location. The AF, OF, PF, 5F and ZF flags are affected.

Microprocessors and Interfacing 3-26 8086 Instruction Set and ALP

Examples :
DEC AL ; Subtracts 1 from the contents of AL.
DEC BX ; Subtracts 1 from the contents of BX.

Note : The carry flag CF is not affected.

If the contents of 8-bit register are 00H and 16-bit register are 0000H, after DEC
instruction contents of registers will be FFH and FFFFH respectively without affecting
carry flag,

DEC BYTE FTR [BX] : Decrement byte at offset of BX in DS.

; BYTE PTR directive indicates to the assembler

; that the byte from memory is to be decremented.
DEC WORD PTR [BX] ; Decrement word at offset of BX in DS,

: WORD PTR directive indicates to the assembler

: that the word from memory is to be decremented.

NEG Instruction : Form 2's complement.

This instruchion replaces the number in a destination with the 2's complement of that
number. The destination can be a register or a memory location. This instruction can be
implemented by inverting each bit and adding 1 to it

The negate instruction updates the AF, CF, SF, PF, ZF and OF flags.

Examples :
; AL = 0011 0101 35H
NEG AL ; Replace number in AL with its 2's complement
: AL = 1100 1011 = CBH

3.5.3 Comparison

The comparison instruction (CMP) compares a byte/word from the specified source
with a byte/word from the specified destination. The source and destination both must be
byte or word. The source may be an immediate number, a register, or a memory location.
The destination may be a register or a memory location. However the source and
destination both can’t be memory locations. The comparison is done by subtracting the
source byte or word from the destination byte or word. But the result is not stored in the
destination. Source and destination remain unchanged, only flags are updated.

Flags : The AF, OF, SF, ZF, PF and CF are updated by the CMP instruction.

Examples :
CMF BL, 01H ; Compare immediate number 01H with byte in BL.
CMP CX, BX ; Compare word in BX with word in CX.
CMP CX, TOTAL : Compare word at displacement

: TOTAL in DS with word in CX.
Note : [t is not possible to compare segment registers.

Microprocessors and Interfacing 3.27 8086 Instruction Set and ALP

The result of comparison is checked by conditional jump, conditional call and
conditional return instructions. We discuss these instructions later in this chapter.

3.5.4 Multiplication
This group of instructions consist of following group of instructions.
¢ MUL : Unsigned multiplication
= [IMUL : Signed multiplication

MUL Instruction : MUL source.

This instruction multiplies an unsigned byte from source and unsigned byte in AL
register or unsigned word from source and unsigned word in AX register. The source can
be a register or a memory location. When the byte is multiplied by the contents of AL, the
result is stored in AX. The most significant byte is stored in AH and least significant byte
is stored in AL. When a word is multiplied by the contents of AX, the most significant
word of result is stored in DX and least significant word of result is stored in AX.

Flags : MUL instruction affect AF, PF, 5F, and ZF flags.

Examples :
MUL B ; AL = BL, result in AX.
MUL BX ; AX = BX, resull high word in DX low word in AX.
MUL WORD PTR [BX] ; AX times word in DS pointed by [BX]

; result high word in DX low word in AX.
IMUL Instruction :

This instruction multiplies a signed byte from some source and a signed byte in AL, or
a signed word from some source and a signed word in AX. The source can be register or
memory location. When a signed byte is multiplied by AL a signed result will be put in
AX. When a signed word is multiplied by AX, the high-order word of the signed result is
put in DX and the low-order word of the signed result is put in AX.

If the upper byte of a 16-bit result or the upper word of 32-bit result contains only
copies of the sign bit (all 0's or all 1's), then the CF and the OF flags will both be 0's. The
AF, PF, 5F, and ZF flags are undefined after IMUL.

To multiply a signed byte by a signed word it is necessary to move the byte into a
word location and fill the upper byte of the word with copies of the sign bit. This can be
done using CBW instruction.

Examples :
IMUL BL : AL = BL, result in AX
IMUL CX : AX = CX, high-order word of result in DX and

; lovw-order word of result in AX.

Microprocessors and Interfacing 3-28 8086 Instruction Set and ALP

3.5.5 Division
This group of instructions consists of following group of instructions
o DIV
« DIV

DIV Instruction : DIV source

This instruction is used to divide an unsigned word by a byte or to divide an
unsigned double word by a word.

When dividing a word by a byte, the word must be in AX register. After the division
AL will contain an 8-bit quotient and AH will contain an 8-bit remainder. If an attempt is
made to divide by 0 or the quotient is too large to fit in AL (greater than FFH), the 8086
will autﬂmal'ir,'all}' execute a type L] i.nl:ern:.pt.

When a double word is divided by a word, the most significant word of the double
word must be in DX and the least-significant word must be in AX. After the division AX
will contain a 16-bit quotient and DX will contain a 16-bit remainder. Again, if an attempt
is made to divide by 0 or the quotient is too large to fit in AX register (greater than
FFFFH), the 8086 will do a type 0 interrupt. For DIV instruction source may be a register
or memory location.

To divide a byte by a byte, it is necessary to put the dividend byte in AL and fill AH
with all 0's. Similarly, to divide a word by a word, it is necessary to put the dividend
word in AX and fill DX with all 's.

Flags : All flags are undefined after a DIV instruction.

Examples :
DIV CL ; Word in AX/byte in CL,
; Quotient in AL, remainder in AH.
DIV CX ; Double word in DX and AX/word in CX,

; Quotient in AX, remainder in DX,
IDIV Instruction : IDIV source

This instruction is used to divide a signed word by a signed byte, or to divide a
signed double word (32-bits) by a signed word. Rest all is similar to DIV instruction.

3.5.6 BCD and ASCI Arithmetic

The B086 allows arithmetic manipulation of both BCD (Binary coded decimal) and
ASCII (American Standard Code for Information Interchange) data. This is accomplished
by instructions that adjust the numbers for BCD and ASCIl arithmetic. Let us see
instructions used for BCD and ASCII arithmetic.

Microprocessors and Interfacing 3-29 8086 Instruction Set and ALP

3.5.6.1 BCD Arithmetic

The 8086 provides two instructions to support BCD arithmetic. They correct result of a
BCD addition and a BCD subtraction. The DAA (decimal adjust after addition) instruction
follows BCD addition, and the DAS (decimal adjust after subtraction) follows BCD

subtraction. Both instructions correct the result of the addition or subtraction so that it is a
BCD number.

DAA Instruction : Decimal Adjust Accumulator.

This instruchion is used to make sure the result of adding two packed BCD numbers is
adjusted to be a legal BCD number.

Instruction works as follows :
1. If the value of the low-order four bits (Dy-Dy) in the AL is greater than 9 or if AF
is set, the instruction adds 6 (06) to the low-order four bits.

2. If the value of the high-order four bits (D-D;) in the AL is greater than 9 or if
carry flag is set, the instruction adds 6 (60} to the high-order four bits.

Examples :

1. ; AL = 0011 1001 = 39 BCD
; CL = 0001 0010 = 12 BCD

Add AL, CL AL = 0100 1011 = 4BH

DAA ; Add 0110 Because 1011 = 9
; AL = 0101 0001 = 51 BCD

2 ; AL = 1001 0110 = 96 BCD
; BL = 0000 0111 = 07 BCD

ADD AL, BL ; AL = 1001 1101 = 9DH

DAA ; Add 0110 Because 1101 = 9

; AL = 1010 0011 = A3H
; 1010 > 9 so add 0110 0000
; AL = 0000 0011 = 03 BCD, CF = 1. The result is 103.
The instrucHon updates the AF, CF, PF, and ZF. The OF is undefined after DAA
instruction.
Note : only works for AL.
DAS Instruction : Decimal Adjust After Subtraction.

This instruction is used after subtracting two packed BCD numbers to make sure the
result is correct packed BCD. Instruction works as follows :
1. If the value of the low-order four bits (Dy-I0;) in the AL is greater than 9 or if AF
is set; the instruction subtracts 6 (06) from the low-order four bits.

2. If the value of the high-order four bits (D-D,) in the AL is greater than 9 or if
carry flag is set, the instruction subtracts 6 (60) from the high-order four bits.

Microprocessors and Interfacing 3-30 8086 Instruction Set and ALP

Examples :

1. : AL = 0011 0010 = 32 BCD
: CL = 0001 0111 = 17 BCD

SUB AL, CL ; AL = 0001 1011 = 1BH
; Subtract 0110 Because 1011 > 9
; AL = 0001 0101 = 15 BCD

2, : AL = 0010 0011 = 23 BCD
- CL = 0101 1000 = 58 BCD

SUB AL, CL ;AL =11001011= CBHCF =1

; Subtract 0110 (6) Because 1011 > 9
: AL = 1100 0N01 = C5H
; Subtract 0110 0000 Because 1100 > 9
;AL=01100101 =65 BCD CF =1,
; CF = 1 means borrow
; is needed means number is negative (- 65).
The DAS instruction updates the AF, CF, PF, and ZF. The OF flag is undefined after
DAS instruction.

Note : DAS only works for AL

3.5.6.2 ASCIl Arithmetic

ASCIHl numbers range in value from 30H to 39H for the numbers 0-9. The 8086
provides four instructions for ASCII arithmetic.

o AAAASCII adjust after addition

= AAS ASCI adjust after subtraction

e AAM:ASCII adjust after multiplication

= AAD :ASCII adjust before division
AAA Instruction : ASCIl Adjust for Addition.

The numbers from (-9 are represented as 30H-39H in ASCII code. When you want to
add two decimal digits which are represented in ASCII code, it is necessary to mask upper
nibble (3) from the code before addition. The 8086 allows you to add the ASCII codes for
two decimal digits without masking off the “3" in the upper nibble of each digit. The AAA
instruction can be used after addition to get the current result in unpacked BCD form.

Examples :
: AL = 0011 0100 ASCTI 4
:CL = 0011 1000 ASCII 8
ADD AL, CL : AL = (110 1100
: 8CH = Incorrect temporary result

AAA : AL = (000 0010 Unpacked BCD for 2.

Microprocessors and Interfacing 3-31 8086 Instruction Set and ALP

:Carry =1 to indicate correct answer is 12
decimal.

The AAA instruction updates the AF and the CF, but the OF, PF, 5F, and ZF are left
undefined.

Note : The AAA instruction only works on the AL register.
AAS Instruction : ASCII Adjust After Subtraction.

The numbers from (-9 are represented as 30-39 in ASCIl code. When you want to
subtract two decimal digits which are represented in ASCII code, it is necessary to mask
upper nibble (3) from the code before subtraction. The 8086 allows you to subtract the
ASCIl codes for two decimal digits without masking off the “3" in the upper nibble of
each digit. The AAS instruction can be used after subtraction to get the current result in
unpacked BCD form.

Examples :
1. ; AL = 0011 1000 ASCII 8
; CL = 0011 0010 ASCII 2
SUB AL, CL ; AL = 0000 0110 BCD 06
CCF =0
AAS ; AL = 0000 0010 = BCD 06
; CF = 0 no borrow required
2, ; AL = 0011 0010 ASCI 2
; CL = 0011 1000 ASCII 8
SUB AL, CL - AL = 1111 1010 = FAH
;CF=1
AAS ; AL = 0000 0110 = BCD 6

: CF = 1 borrow needed means (- 6)
AAM Instruction : ASCIl Adjust After Multiplication.

After the two unpacked BCD digits are multiplied, the AAM instruction is used to
adjust the product to two unpacked BCD digits in AX.

Examples :
; AL = 0000 0100 = Unpacked BCD 4
; CL = 0000 0110 = Unpacked BCD 6
MUL CL : AL x CL Result in AX.
: AX = 0000 0000 0001 1000 = 0018H
AAM ; AX = 0000 0010 0000 0100 = 0204H

; Which is unpacked BCD for 24.
Now by adding 3030H in AX register we get the result in ASCII form.

Microprocessors and-nterfacing 3-32 B086 Instruction Set and ALP

AAD Instruction : ASCII Adjust Before Division.

AAD converts two unpacked BCD digits in AH and AL to the equivalent binary
number in AL. This adjustment must be made before dividing the two unpacked BCD
digits in AX by an unpacked BCD byte. After the division AL will contain the unpacked
BCD quotient and AH will contain the unpacked BCD remainder. The PF, SF and ZF are
updated. The AF, CF and OF are undefined after AAD.

Examples :
; AX = 0403 unpacked BCD for 43 decimal, CL = 0FH
AAD ; Adjust to binary before division,
; AX = D02BH = 2BH = 43 decimal.
Div CL ; Divide AX by unpacked BCD in CL.

: AL = quotient = 06 unpacked BCD
: AH = remainder = 01 unpacked BCD

Now by adding 3030H in AX register we get the quotient and remainder in ASCII
form.

3.5.7 Basic Logic Instructions

The basic logic instructions include AND, OR, Exclusive-OR, and NOT. This group
also includes TEST instruction which is a special form of the AND instruction.

AND Instruction : AND destination, source.

We know that, AND operation with two inputs produces result logic 1 only when both
the inputs are logic 1. ie. ¥ = A-B

A B Y
0 0 0
0 1 0
1 0]
1 1 1

Table 3.2 : Truth table for AND gate
This instruction logically ANDs each bit of the source byte or word with the
corresponding bit in the destination and stores result in the destination. The source may be
an immediate number, a register or a memory location. The destination may be a register

Microprocessors and Interfacing 3-33 8086 Instruction Set and ALP

OF a memory Incation. The source and destination both cannot be EmMOry lpcations in the
same instruction. The CF and OF are both 0 after AND. The PF, SF and ZF are affected.
AF is undefined.

Examples :
1. s AL = 1001 0011 = 93H
; BL = 0111 0101 = 75H
AND BL, AL ; AND byte in AL with byte in BL
s BL = 0001 0001 = 11H
2. ; CX = 0110 1011 1001 1110
AND CX, OFIH 3 OX = 0000 0000 1001 0000

The AND operation clears bits of a binary number. The task of clearing a bit in a
binary number is called masking. The Fig. 3.14 shows the process of masking.

—C_ XX X X XX X x Uinknown 8-bit binary number
— & 1111 0000 Masking pattern
X XXX 0000 Result

L Masked bits

Fig. 3.14 Masking using AND operation
OR Instruction : OR destination, source.

We know that, OR operation with two inputs produces result logic 1 when any one or
both inputs are logic 1 ie.,. Y = A + B.

A B Y
0 0 0
) 1 1
1 0 1
1 1 1

Table 3.3 Truth table for OR gate
This instruction logically ORs each bit of the source byte or word with the
corresponding bit in the destination and stores result in the destination. The source may be
an immediate number, a register or a memory location. The destination may be a register

Microprocessors and Interfacing 3-34 8086 Instruction Set and ALP

or a memory location. The source and destination both can not be memory locations in the
same instruchon. The CF and OF are both 0 after OR. The PF, SF and ZF are affected. AF
is undefined.

Examples :
1. ; AL = 1001 0011 = 93H
; BL = 0111 0101 = 75H
OR BL, AL ; OR byte in AL with byte in BL.
; BL = 1111 0111 = FFH
2. ; OX = 0110 10711 1001 1110
OR CX, 00FOH : CX = 0110 1011 1111 1110

The OR instruction iz used to set (make one) any bit in the binary number. This is
illustrated in Fig. 3.15.

_G: XX KX XXX LUnknown 8-bit binary number
+ 1111 0000 Setting pattern
b i b XK XX Result

‘\— Sel bits

Fig. 3.15 Setting bit's using OR operation
XOR Instruction : XOR destination, source.

We know that, XOR operation produces result logic 1 when odd number of inputs are
logic 1ie. Y=AB+AB

A B Y
0 0 o
0 1 1
1 o 1
1 1 0

Table 3.4 : Truth table for XOR gate
This instruction logically XORs each bit of the source byte or word with the
corresponding bit in the destination and stores result in the destination. The source may be

Microprocessors and Interfacing 3-35 8086 Instruction Set and ALP

an immediate number, 2 register or a memory location. The destination may be a register
or a memory location. L he source and destination both cannot be memory locations in the
same instruction. The CF and OF are both O after XOR, The PF, SF and ZF are affectod. AF
is undefined.

Examples :

1. ;AL = 1010 1111 = AFH
;BL= 111 0000 = FOH

XOR BL, AL ; XOR byte in AL with byte in BL
; BL = 0101 1111 = 5FH

The XOR instruction is used if some bits of a register or memory location must be
inverted. This instruction allows part of a number to be inverted or complemented. This is
illustrated in Fig. 3.16.

x Unkmown B-bil binary number

_q: A A
® 0000 1111 Pattern for inverting lower 4-bits
XX XX XX XX Result

\— Imverted bits

Fig. 3.16 Inversion of part of a number using XOR operation

NOT Instruction : NOT destination.

The NOT instruction inverts each bit of a byte or a word. The destination can be
register or a memory location.

Flags : NOT instruction affects no flag.

Examples :
; AL = 0110 1100
NOT AL ; AL = 1001 0011
;OX = 1010 1111 0010 0110
NOT CX ;X = 0101 0000 1101 1001

Test and bit test instructions :

The TEST instruction performs the AND operation. The difference is that the AND
instruction changes the destination operand, while the TEST instruction does not. A TEST
only affects the condition of the flag register, which indicates the result of the test.

PF, SF and ZF will be updated to show the results of the ANDing. PF has meaning
only for the lower 8 bits of the destination. AF will be undefined.

Microprocessors and Interfacing 3-36 B0O8E Instruction Set and ALP

Examples :
TEST AL, CL ; AND CL with AL.
; Update fHags, result is not stored.
TEST BX, CX ; AND CX with BX.

; Update flags, result is not stored.

The TEST instruction functions in the similar manner as a CMFP instruction. The
difference is that the TEST instruction normally tests a single bit (or occasionally multiple
bits), while the CMP instruction tests the entire byte or word. The Fig. 3.17 shows the bit
pattern and test operation for testing of bit (. If zero flag is set (£ = 1) after this operation,
the bit under test bit-0 is zero ; otherwise bit-0 is 1.

The zero flag is wsually tested by JZ£ or [NZ instructions. Therefore, the TEST
instruction is usually followed by either the |Z or [NZ instruction.

X KKK X XK X X Unknown B-bit binary number
0000 00 01 Bit pattern io ftest bit 0
o0 oo 0o 00X Result

\—'- Tesled bit

Fig. 3.17 TEST operation
3.5.8 Shift and Rotate

3.5.8.1 Shift

Shift instructions position or move binary data to the left or right by shifting them
within the register or memory location. They also perform multiplication by powers of 2*"
(left shift) and division by powers of 2-" (right shift). The shift operations can be classified
as logical shifts and arithmetic shifts. The logical shifts move a 0 into the rightmost bit
position for a logical left shift (SHL) and a 0 into the leftmost bit position for a logical
right shift (SHR). The arithmetic left shift (SAL) and logical left shift operations are
identical. However, arithmetic and logical right shifts are different because the arithmetic
right shift (SAR) copies the sign bit through the number, while the logical right shift
copies a 0 through the number. This is illustrated in Fig. 3.18. Logical shift operations are
used with unsigned numbers; they perform multiplication or division of unsigned
numbers. On the otherhand, arithmetic shift operations are used with signed numbers;
they perform multiplications or division of signed numbers.

Microprocessors and Interfacing 3-37 8086 Instruction Set and ALP

CY Target register or memory
SHL f— 0
CY
SAL | - 0
cY
SHR 0 ——= - {
cY
SAR

1

Sign bit (MSB)
Fig. 3.18 Shift operations
SAL/SHL Instruction : SAL/SHL destination, count.

SAL and SHL are two mnemonics for the same instruction. This instruction shifts each
bit in the specified destination to the left and 0 is stored at LSB position. The M5B is
shifted into the carry flag. The destination can be a byte or a word. It can be in a register
or in a memory location. The number of shifts are indicated by count. But if the number of
shifts required is one, you can place 1 in the count position. If number of shifts are greater
than 1 then shift count must be loaded in CL register and CL must be placed in the count
position of the instruction.

Diagram shows SAL instruction for byte operation.

oY B, 8 B B8, B 8 8 B8
After Execution 1 o)1 1101 1 i]

Flags : All flags are affected.

Microprocessars and Interfacing 3-38 6086 Instruction Set and ALP

Examples :
SAL CX. 1 : Shift word in CX 1 bit position left, 0 in LSB
MOV CL, 05H ; Load desired number of shifts in CL
SAL AX, CL ; Shift word in AX left 5 times

; Os in 5 least-significant bits.
SHR Instruction : SHR destination, count

This instruction shifts cach bit in the specified destination to the right and 0 is stored
at M5B position. The L5B is shifted into the carry flag. The destination can be a byte or a
word. [t can be in a register or in a memory location. The number of shifts are indicated
by count. If number of shifts required is one, you can place 1 in the count position. But if
the number of shifts are greater than 1 then shift count must be loaded in CL register and
CL must be placed in the count position of the instruction.

Dragram shows SHR instruction tor byvle operation.

B B, B8 B B B B8 B8 5
Q) m——y 1] 1 0 1 a] 'I-—-IIJ'

After Execution ol1fa]lrfof1]lo]e i

Flags : All flags are affected.

Examples :
SHRE CX, 1 ; Shift word in CX 1 bit position right, 0 in MSB.
MOV CL, 05H : Load desgired number of shifts in CL.
SHE AX, CL ; Shift word in AX right 5 times

; O's in 5 most significant bils,
SAR Instruction : SARE deshnation, count.

This instruction shifts each bit in the specified destination some number of bit
poositions B the right. A a bil s shilted oul of the MSB position, a copy of the old MSB is
put in the M5B position. The LSB will be shifted into CF. In the case of multiple shifts, CF
will contain the bit most recently shifted in from the LSB. Bits shifted into CF previously
will be lost.

The destination can be a byle or a word. It can be in a register or in a memory
location. The number of shifts are indicated by count. If number of shitts required is one,
you can place 1 in the count position. If number of shifts are greater than 1 then shift
count must be loaded in CL register and CL must be placed in the count position of the
instruction.

Microprocessors and Interfacing 3-39 8086 Instruction Set and ALP

Diagram shows SAR instruction for byte operation.

1] EHE-LEaE;_HlH-D ey
o]l v o]y} o]l @] 1 fj==]0

L] 1 o] o 1 1] o I 1

Flags : All flags are affected.

Examples :

SAR BL, 1 ; Shift byte in BL one bit position right.

MOV CL, (4H ; Load desired number of shifts in CL.

SAR DX, CL ; Shift word stored in DX 4 biat ['u‘.r:-iitium: right.
1.5.8.2 Rotate

Rotate instructions position or move binary data by rotating the information in a
register or memory location, either from one end to another or through the carry fag. This
is illustrated in Fig 3.19.

cY Targel register or memony
RCL I.._._
(| Rotate lefl through camy)
CY
ROL
{ Rotate left) —
cY
RCR 1_" - -
{ Rotate right through carry)
cY
ROR -
[Rotate right)

Fig. 3.19 Rotate operations

Microprocessors and Interfacing 3-40 8086 Instruction Set and ALP

ROL Instruction : ROL destination, count.

This instruction rotates all bits in a specified byle or word to the left some number of
bit positions. M5B is placed as a new LSB and a new CF.

Diagram shows ROL instruction for byte rotation.

cY e 8, B 8, B 8 B
—l—I H‘

1 | a 1 [1 0 L] i]

lhe destination can be a byte or a word. It can be in a register or in a memory
location. The number of shifts are indicated by count. If number of shifts required is one
you can place 1 in the count position. If number of shifts are greater than 1 then shift
count must be loaded in CL register and CL must be placed in the count position of the
Instruction.

Examples :
ROL CX, 1 ; Word in CX one bit position left, MSB to LSB and CF
MOV CL, 03H ; Load desired number of bits to rotate in CL.
ROL BL, CL ; Rotate BL three positions.

ROR Instruction : ROR destinalion, count.
This instruchion rotates all bits in a ::p-eﬁﬁed byte or waord to the right some nimber of
bit positions. L5B is placed as a new M5B and a new CF.

The destination can be a byte or a word. It can be in a register or in a memory
location. The number of shifts are indicated by count. If number of shifts required is one,
vou can place 1 in the count position. If number of shifts are greater than 1 then shift

count must be loaded in CL register and CL must be placed in the count position of the
instruction.

Diagram shows ROR instruction for byte rotation.

E;r Eﬁ E:, E" H! Ei ‘H-] B.u CY

nOnOOnnn e

Microprocessors and interfacing 3-41 8086 Instruction Set and ALP

Examples :
ROR CX, 1 ; Rotated word in CX one bit position right,
: LSB to MSB and CF.
MOV CL, 03H ; Load number of bits to rotate in CL.
ROR BL, CL ; Rotate BL three positions.

RCL Instruction : RCL destination, count.

This instruction rotates all of the bits in a specified word or byte some number of bit
positions to the left along with the carry flag. MSB is placed as a new carry and previous
carry is placed as a new LSB.

The destination can be a byte or a word. It can be in a register or in a memory
location. The number of shifts are indicated by count. If number of shifts required is one,
you can place 1 in the count p-uﬁit:iun. If number of shifts are greater than 1 then shift
count must be loaded in CL register and CL must be placed in the count position of the
instruction.

Diagram shows RCL instruction for byte rotation.

CY B, By By 8 B B B B
’7] i] 1 a 1 1 0 1)——‘
1 V] 1 Q 1 1 [i] 1 a I
Examples :
RCL CX, 1 ; Rotated word in CX 1 bit left, MSB to CF, CF to LSB.
MOV CL, 4H : Load number of bit positions to rotate in CL.
RCL AL, CL ; Rotate AL 4 bits left.

RCR Instruction : RCR destination, count.

This instruction rotates all of the bits in a specified word or byte some number of bit
positions to the right along with the carry flag. LSB is placed as a new carry and previous
carry is placed as a new MSB.

The destination can be a byte or a word. It can be in a register or in a memory
location. The number of shifts are indicated by count. If number of shifts required is one
you can place 1 in the count position. If number of shifts are greater than 1 then shift
count must be loaded in CL register and CL must be placed in the count position in the
instruction.

Microprocessors and Interfacing 3-42 8086 Instruction Set and ALP
Diagram shows RCR instruction for byte rotation.

B, B B B, B, B B B cY
o] 1|0

1 o o i 1

|1 i 6] 0 i i /] 1||1]I

Examples :
RCR CX, 1 ; Word in CX 1 bit right, LSB to CF, CF to M5B.
MOV CL, (4H ; Load number of bit positions to rotate in CL.
RCE AL, CL ; Rotate AL 4 bits right.

3.6 String Instructions
The B086 instruction set provides following string instructions.
* REP/REPE/REPZ/REPNE/REPNZ
« MOVS/MOVSBE/MOVSW
« LODS/LODSB/LODSW
* S5TOS/5TOSB/STOSW
s CMPS/CMPSB/CMPSW
« SCAS/SCASB/SCASW

From the above six h'r'mtructims we have already studied first four instructions in
section 34. the remaining two instructions are string compare instructions. The string
comparison instructions allow the programmer to test a section of memory against a
constant or against another section of memory.

CMPS/ICMPSB/CMPSW Instruction :

A siting is a series of the same type of data items in sequential memory locations. The
CMPS instruction can be used to compare a byte in one string with a byte in another
string or to compare a word in one siring with a word in another string. Sl is used to hold
the offset of a byte or word in the source string and DI is used to hold the offset of a byte
of a word in the other string. The comparison is done by subtracting the byte or word
pointed to by DI from the byte or word pointed to by SI. The AF, CF, OF, PF, 5F, and ZF

flags are affected by the comparison, but neither operand is affected.

Microprocessors and Interfacing 3-43 8086 Instruction Set and ALP
Examples :

; Point SI at source string, Point DI at
; destination string

MOV 51, OFFSET F_STRING

MOV DI, OFFSET 5_STRING

CLD ; DF cleared =0 SI and DI will
; autoincrement after compare

CMPS F_STRING, S_STRING ; The assembler uses names to determine whether
; strings were declared as type byte or as type
; word.

MOV CX, 100 ; Put number of string elements in CX, Point 51 at

; source of siring and D at destination of siring
MOV SI, OFFSET F_STRING
MOV DI, OFFSET 5_5TRING

STD ; DF set s0 51 and DI will autodecrement after
; compare
REPE CMPSB : Repeat the comparison of string bytes until end

; of string or until compared bytes are not equal.

After the comparison SI and DI will be automatically incremented or decremented
according to direction flag to point to the next element in the two sirings (if DF = 0, 5l
and DI T otherwise 4+) CX functions as a counter which is decremented after each
comparison. This will go on until CX = 0.

SCAS/SCASB/ISCASW Instruction :

SCAS compares a string byte with a byte in AL or a string word with word in AX.
The instruction affects the flags, but it does not change ecither the operand in AL (AX) or
the operand in the string. The string to be scanned must be in the extra segment and DI
must contain the offset of the byte or the word to be compared.

After the comparison DI will be automatically incremented or decremented according
to direction flag to point to the next element in the two strings (if DF =0, Sl and DI T
otherwise +) CX functions as a counter which is decremented after each comparison. This
will go on until CX = 0. SCAS affects the AF, CF, OF, PF, SF and ZF flags.

Examples :
: Scan a text string of 80 characters
; for a carriage return
MOV AL, 0DH ; Byte to be scanned for into AL
MOV DI, OFFSET TEXT_STRING ; Offset of string to DI
MOV CX, 50 ; OX used as element counter

CLD : Clear DF, so DI autoincrements

Microprocessors and Interfacing 3-44 8086 Instruction Set and ALP

REPNE SCAS TEXT_STRING : Compare byte in string with byte in
5 AL.
SCASB says compare sirings as bytes and SCASW says compare sirings as words.

3.7 Program Control Transfer Instructions
These instructions are classified as
s Unconditional transfer instructions - CALL, RET, JMP

¢ Conditional transfer instructions - | cond

3.7.1 CALL and RET Instructions

Whenever we need to use a group of instruchions several times throughout a program
there are two ways we can avoid having to write the group of instructions each time we
want to use them. One way is o write the group of instructions as a separate procedure.
We can then just CALL the procedure whenever we need to execute that group of
instructions. For calling the procedure we have to store the return address onto the stack.
This process takes some time. If the group of instructions is big enough then this overhead
time is negligible with respect to execution time. But if the group of instructions is too
short, the overhead time and execution time are comparable. In such cases, it is not
desirable to write procedures. For these cases, we can use macros. Macro is also a group of
instructions. Each time we “CALL" a macro in our program, the assembler will insert the
defined group of instructions in place of the “CALL". An important point here is that the
assembler generates machine codes for the group of instructions each time macro is called.
So there is not overhead time involved in calling and returning from a procedure. The
disadvantage of macro is that it generates inline code each time when the macro is called
which takes more memory. In this section we discuss the procedures.

From the above discussions, we know that the procedure is a group of instructions
stored as a separate program in the memory and it is called from the main program
whenever required. The type of procedure depends on where the procedure is stored in
the memory. If it is in the same code segment where the main program is stored then it is
called near procedure otherwise it is referred to as far procedure. For near procedure
CALL instruction pushes only the [P register contents on the stack, since CS5 register
contents remains unchanged for main program and procedure. But for far procedures
CALL instruction pushes both IP and C5 on the stack. Let us see the detail description and
examples of CALL instruction to enter the procedure and RET instruction to return from
the procedure.

Microprocessors and Interfacing 3-45 8086 Instruction Set and ALP

CALL Instruction :

The CALL instruction is used to transfer execution to a subprogram or procedure.
There are two basic types of CALLs, near and far. A near CALL is a call to a procedure
which is in the same code segment as the CALL instruction. When the B0B6 executes a
near CALL instruction it decrements the stack pointer by two and copies the offset of the
next instruction after the CALL on the stack. It loads IP with the offset of the first
instruction of the procedure in same segment.

A far CALL is a call to a procedure which is in a different segment from that which
contains the CALL instruction. When the 8086 executes a far CALL it decrements the stack
pointer by two and copies the contents of the CS register to the stack. It then decrements
the stack pointer by two again and copies the offset of the instruction after the CALL to
the stack. Finally, it loads C5 with the segment base of the segment which contains the
procedure and [P with the offset of the first instruction of the procedure in that segment.

Examples :

Direct within segment (near)

CALL PRO : PRO is the name of the procedure.
; The assembler determines displacement of pro
; from the instruction after the CALL and codes
; this displacement in as part of the instruction.

Indirect within-segment (near)

CALL CX ; CX contains, the offset of the first instruction
; of the procedure. Replaces contents of IP with
; contents of register CX.

Indirect to another segment (far)

CALL DWORD PTR [BX] ; Mew values for C5 and IP are fetched from four
: memory locations in DS, The new value for CS
; is fetched from |BX] and |BX + 1], the new IP
: is fetched from [BX + 2] and [BX + 3].

RET Instruction :

The RET instruction will return execution from a procedure to the next instruction
after the CALL instruction in the calling program. If the procedure is a near procedure (in
the same code segment as the CALL instruction), then the return will be done by replacing
the instruction pointer with a word from the top of the stack.

If the procedure is a far procedure (in a different code segment from the CALL
instruction which calls it), then the instruction pointer will be replaced by the word at the
top of the stack. The stack pointer will then be incremented by two. The code segment
register is then replaced with a word from the new top of the stack. After the code
segment word is popped off the stack, the stack pointer is again incremented by two.
These words/word are the offset of the next instruction after the CALL. So B8& will fetch
the next instruction after the CALL.

Microprocessors and Interfacing 3-46 8086 Instruction Set and ALP

A RET instruction can be followed by a number, for example, RET 4. In this case the
stack pointer will be incremented by an additional four addresses after the IP or the IP
and C5 are popped off the stack, This form is used to increment the stack pointer up over
parameters passed to the procedure on the stack.

Flags : The RET instruction affects no flags.

3.7.2 JMP Instruction

This group: of instructions will always cause the B086 to fetch its next instruction from
the location specified or indicated by instruction rather than from the next location after
the |MP instruction. The JMP instructions are basically classified as unconditional jump
(IMP) and conditional jump instructions. A conditional jump instruction allows the
programmer to make decisions based upon numerical tests. The results of numerical tests
are held in the flag bits, which are then tested by conditional jump instructions.

The jump instructions are further classified as short, near and far jump instructions. A
short jump is a two-byte instruction that allows jumps or branches to memory locations
within +127 and -128 bytes from the address following the jump. A three byte near jump
allows a branch or jump within £ 32 Kbytes (or anywhere in the current code segment)
from the instruction in the current code segment. The segments are cyclic in nature. This
means that, one location above offset address FFFFH is offset address 0000H, two locations
above offset address FFFFH is offsel address 0001H and so on. Thus, a displacement of +
32 kbytes allow a jump to any location within the current code segment. In near jump
only 1P is changed, the contents of C5 remains same. A five byte far jump allows a jump
to any memory location within the real memory system. A far jump is a jump where
destination location is from a different segment. In this case both IP and CS are changed
as specified in the destination. The short and near jump are often called intrasegment
jumps, and the far jumps are often called intersegment jumps. The short jumps are also
called relative jumps because in such instructions the destination location is specified
relative to the current location. The Fig. 3.20 shows instruction formats for short, near and
far jump instructions.

Mear and far jumps are further described as either direct or indirect. If the destination
address for the jump is specified directly within the instruction, then the jump is described
as direct. If the destination address for the iump s contained n a mg‘.i.ﬁh.!r O Memory
locatiom, the jump is referred as indirect, because the 8086 has to access the specified
register or memory location to get the required destimation address.

Microprocessors and Interfacing 3-47 B0806 Instruction Set and ALP

opooda
short EB Disp

opcode

Disp Disp

mear | B9 | Low | High
opcode

[=] [[= Cs C5
Tar EA | Low | High | Low | High

Fig. 3.20 Instruction formats for short, near and far jumps

Examples : (Unconditional jump)
JMP NEXT ; Fetch next instruction from address at label NEXT.
i If label is in same segment, an offset coded as part of
; the instruction will be added to the instruction pointer
; o produce the new fetch address. If the label is in
; another segment then IF and C5 will be replaced with
; values coded in as part of the instructon.
; This type of jump is referred to as direct
; because the displacement of the destination or the
; destination itself is specified directly in the instruction.
JMP BX ; Replace the contents of IP with the contents of BX.
; BX must first be loaded with the offset of the
; destination instruction in CS. This is a near jump. It is
: referred to as an indirect jump because the new value
; for IP comes from a register rather than from the
; instruction itself as in a direct-type jump.

JMP WORD PTR [BX] : Replace IP with a word from a memory location
; pointed to by BX in DS. This is an indirect near jump.
IMP DWORD PTR [SI] ; Replace IP with word pointed to by Sl in DS.

: Replace CS with word pointed to by 51 + 2 in DS,
: This is an indirect far jump.

Microprocessors and Interfacing 3-48 8086 Instruction Set and ALP

As explained earlier, a near type jump instruction can cause the next instruction to be
fetched from anywhere in the current code segment. To produce the new instruction fetch
address, this instruction adds a 16-bit signed displacement contained in the instruction to
the contents of the instrucHon pm'nh,‘r I!'I';.'Ei:i-‘tl,!‘l’. A 16 bit :i-igﬂr-_'d di:i‘FilH.fE:ﬂ'lE'l'Ll means that
the jump can be to a location anywhere from +32,767 to -32,768 bytes from the current
instruction pointer location. A positive displacement usually means jump is “ahead” in the
program, and a negative displacement usually means jump is “backward” in the program.

A special case of the direct near jump instruction is direct short jump. If the
destination for the jump is within a displacement range of +127 to -128 bytes from the
current instruction pointer location, the destinaion can be reached with just an 8 bit
displacement.

3.7.3 Cond - Conditional Jump

Conditional jumps are always short jumps in the B086. These instructions will cause a
jump to a label given in the instruction if the desired condition(s) occurs in the program
before the execution of the instruction. The destination must be in the range of <128 bytes
to +127 bytes from the address of the instruction after the conditional transfer instruction.
If the jump is not taken, execution simply goes on to the next instruction.

Instruction Code Description Condition for jump
JAJINBE Jump if abovel/Jump if not below or equal. CF=0and ZF = 0
JAELINE Jump if above or equalJump if nol below. CF=0and ZF = 1
JB/LINAENIC Jurmnp if below/Jumg if not above or equal. CF=1and 2ZF =0
JBELIMA, Jump if balow or equal'Jump if nol abowe. CF =1and ZF = 1
JEMZ Jump if equal/Jump if zero flag. ZF =1
JGIINLE Jump if greater/Jump if not less than nor equal. ZF =0 and CF = 0
JEEMML Jump if greater than or equal’Jump if not less than. SF =10
JUINGE Jump if less than/Jump if not greater than or equal. SF= 0
JLEIJNG Jump if less than or equallJump if not grealer ZF=1orSF 20
JNC Jump if no carry CF=20
JNE/IMZ Jurmp if nol equallJump if not 2ero ZF =0
JNO Jump if no overfiow OF =0
JNPIIPO Jump if not parity/Jump if parity odd PF =0
JNS Jump if not sign or jump if positive SF =0
Jo Jump if overflow flag = 1. OF =1
JPIPE Jump if parity/Jump If parity even PF =1
Js Jump if sign flag = 1 or jump i negative SF=1
JCXZ Jump if CX is zero CX=0

MNote : The terms greater and less are used to refer to the relationship of two signed
numbers.

Microprocessors and Interfacing 3-49 8086 Instruction Set and ALP
3.8 lteration Control Instructions

These instructions are used to execute a series of instructions some number of times.
The number is specified in the CX register. The CX register is aulomatically decremented
by one, each time after execution of LOOP instruction. Until CX = 0, execution will jump
to a destination specified by a label in the instruction.

The destination address for the jump must be in the range of - 128 bytes to + 127
bytes from the address of the instruction after the iteration control instruction. For
LOOPE/LOOPZ and LOOPNE/LOOPNZ instructions there is one more condition for exit
from loop, which is given below. If the loop is not taken, execution simply goes on to the
next instruction after the iteration control instruction.

Instruction Code Description Condition for Exit
1. LODP Loop through a sequence of instructions CX =0
2. LOOPE/LODOPZ Loop through a sequence of instructions CX=0or ZF =10
3. LOOPHELODPMZ Loap through a sequence ol instructions CEX=0or ZF =1

3.9 Processor Control Instructions

« STC

« (CLC

¢ CMC

« S5TD

« CLD

= 5TI

« (LI
STC Instruction :

This instruction sets the carry flag, STC does not affect any other flag.
CLC Instruction :

This instruction resets the carry flag to zero. CLC does not affect any other flag.
CMC Instruction :

This instruction complements the carry flag. CMC does not affect any other flag.
STD Instruction :

This instruction is used to set the direction flag to one so that 51 and/or DM can be
decremented automatically after execution of string instructions. STD does not affect any

other flag.

Microprocessors and Interfacing 3-50 8086 Instruction Set and ALP

CLD Instruction :

This instruction s used to reset the direchion Hag to zero, so that 51 and/or DI can be
incremented automatically after execution of string instructions. CLD does not affect any
other flag,.

STI Instruction :

This instruction sets the interrupt flag to one. This enables INTR interrupt of the B086.
5TI does not affect any other flag,

CLI Instruction :

This irstruction rosets the internlpt ﬂag to zero. Due to thas 8086 will mot I!‘l."!ip-l':ll"bd to
an interrupt signal on its INTR input. CLI does not affect any other flag.

3.10 External Hardware Synchronization Instructions

« HLT
« WAIT
s ESC

« LOCK
® MNOP

HLT Instruction :

The HLT instruction will cause the 8086 to stop fetching and executing instructions.
The 8086 will enter a halt state. The only ways to get the processor out of the halt state
are with an interrupt signal on the INTR pin, an interrupt signal on the NMI pin, or a
reset signal on the RESET input.

WAIT Instruction :

When this instruction executes, the 8086 enters an idle condition where it is doing no
processing. The 8086 will stay in this idle state until a signal is asserted on the 8086 TEST
inpul pin, or until a valid interrupt signal is received on the INTR or the NMI interrupt
input pins. If a valid interrupt occurs while the 8086 is in this idle state, the B086 will
return to the idle state after the execution of interrupt service procedure. WAIT affects no
flags. The WAIT instruction is used to synchronize the 8086 with external hardware such
as the 8087 math coprocessor.

ESC Instruction :

This instruction is used to pass instructions to a coprocessor such as the 8087 math
coprocessor which shares the address and data bus with an B086. Instructions tor the
coprocessor are represented by a 6-bit code embedded in the escape instruction. When the
BO86 tetches an ESC instruction, the coprocessor decodes the instruction and carries out the

Microprocessors and Interfacing 3-51 8086 Instruction Set and ALP

action specified by the 6-bit code specified in the instruction. In most cases the 8086 treats
the ESC instructon as a NOP. In some cases the B086 will access a data item in memory
for the COPTOCeSSOT.

LOCK Instruction :

In a multiprocessor system each microprocessor has its own local buses and memory.
The individual microprocessors are connected together by a system bus so that each can
access system resources such as disk drives or memory. Each microprocessor only takes
control of the system bus when it needs to access some system resources. The LOCK prefix
allows a microprocessor to make sure that another processor does not take control of the
system bus while it is in the middle of a critical instruction which uses the system bus.
The LOCK prefix is put in front of the critical instruction. When an instruction with a
LOCK prefix executes, the B0S6 will assert its bus lock signal output. This signal is
connected to an external bus controller device which then prevents any other processor
from taking over the system bus. LOCK affects no flags.

Examples :

LOCK XCHG SEMAPHORE, AL ; The XCHG instruction requires two bus accesses.
; The LOCK prefix prevents another processor
; from taking control of the system bus between
; the two accesses.

NOP Instruction :
At the time of execution of NOP instruction, no operation is performed except fetch
and decode. It takes three clock cveles o execute the instruction. NODP instruchon does not

affect any flag. This instruction is used o fill in time delays or o delete and insert
instructions in the program while trouble shooting.

3.11 Interrupt Instructions
INT Instruction : INT Type
This instruction causes the 8086 to call a far procedure. The term type in the

instruction refers to a number between 0-255 which identifies the interrupt. The address of
the procedure is taken from the memory whose address is four times the type number.

INTO Instruction :

If the overflow flag is set, this instruction will cause the 8086 o do an indirect far call
to a procedure you write to handle overflow condition. To do call the 8086 will read a
new value for [P from address 00010H and a new value of CS from address (0012H.

Microprocessors and Interfacing 3 .52 B086 Instruction Set and ALP

IRET Instruction :

The IRET instruction is used at the end of the interrupt service routine fo return
execution to the interrupted program. The B086 copies return address from stack into [P
and C5 registers and the stored value of Hags back to the flag register.

MNote : The RET instruction does not copy the flags from the stack back o the flag
regisher.

3.12 Assembler Directives

There are some instructions in the assembly language program which are not a part of
processor instruction set. These instructions are instructions to the assembler, linker, and
loader. These are referred to as pseudo-operations or as assembler directives. The
assembler directives enable us to control the way in which a program assembles and lists.
They act during the assembly of a program and do not generate any executable machine
code.

There are many specialized assembler directives. Let us see the commonly used
assembler directive in 8086 assembly language programming.

ALIGN : The align directive forces the assembler to align the next segment at an
address divisible by specified divisor. The general format for this directive is as shown
below.

ALIGN number
where number can be 2, 4, B or 16.
Example : ALIGN 8 ; This forces the assembler to align the next segment

; at an address that is divisible by 8. The assembler fills
; the unused bytes with 0 for data and NOP instructions
; for code.

Usually ALIGN 2 directive is used to start the data segment on a word boundary and
ALIGN 4 directive is used to start the data segment on a double word boundary.

ASSUME : The 8086, at any time, can directly address four physical segments which
include a code segment, a data segment, a stack segment and an exira segment. The B086
may contain a number of logical segments. The ASSUME directive assigns a logical
segment to a physical segment at any given time. That is, the ASSUME directive tells the
assembler what addresses will be in the segment registers at execution time.

Example : ASSUME S : code, DS : Data, 55 : stack.

ACODE : This directive provides shortcut in definition of the code segment. General
format for this directive is as shown below.

code [name]
The name is optional. It is basically specified to distinguish different code segments
when there are multiple code segments in the program.

Microprocessors and Interfacing 3-53 BO86 Instruction Set and ALP

DATA : This directive provides shortcut in definition of the data segment.

DB, DW, DD, DQ, and DT : These directives are used to define different types of
variables, or to set aside one or more storage locations of corresponding data lype in
memory. Their definitions are as follows :

DB - Define Byte

DW - Define Word

DD - Define Doubleword
DQ - Define Quadword
DT - Define Ten Bytes

Example :
AMOUNT DB 10H, 20H, 30H, 40H : Declare array of 4 bytes named
; AMOUNT
MES DB "WELCOME' ; Declare array of 7 bytes and
; inibalize with ASCID codes for letters in
; WELCOME.

DUFP : The DUF directive can be used to initialize several locations and to assign
values to these locations.

Format : Name Data_Type Num DUF (value)

Example :
TABLE DW 10 DUF (0) ; Reserve an array of 10
; words of memaory and initialize all 10
; words with 0. Array is named TABLE.

END : The END directive is put after the last statement of a program to tell the
assembler that this is the end of the program module. The assembler ignores any
statement after an END directive.

EQU : The EQU directive is used to redefine a data name or variable with another
data name, variable, or immediate value. The directive should be defined in a program
before it is referenced.

Formats :
MNumeric Equate : name EQU expression
String Equate : name EQU <siring>
Example : PORT EQU 80 ; Numeric value
NUM EQU <'Enter the first number -
MES DBE NUM ; Replace with string

EVEN : EVEN tells the assembler to advance its location counter if necessary so that
the next defined data item or label is aligned on an even storage boundary. This feature
makes processing more efficient on processors that access 16 or 32 bits at a time.

Microprocessors and Interfacing 3-54 8086 Instruction Set and ALP

Example :
EVEN LOOKUP DW 10 DUP (D) ; Declares the array of ten words
; starting from even address.

EXTRN : The EXTEN directive is used to inform assembler that the names or labels
following the directive are in some other assembly module. For example, if you want o
call a procedure which is in a program module assembled at a different time, you must
tell the assembler that the procedure is EXTRN. The assembler will then put information in
the object code file so that the linker can connect the two modules together. For a
reference it is necessary to specify whether the label is near or far.

NOTE : Names and labels referred to as external in ome module must be declared
public.

Exampie :
CALLING PROGEAM CALLED FROGEAM
DATA SEGMENT EXTRM VAR : FAR
PFUBLIC VAR DATA SEGMENT
VAR DW .
- MOV AX, VAL
DATA ENDS .

DATA ENDS

GROUP : A program may contain several segments of the same type (code, data, or
stack). The purpose of the GROUP is to collect them all under one name, so that they
reside within one segment, usually a data segment.

Format : Name GROUP Seg-name, . . . , Seg-name.

Example :
SEG GROUP SEG1, SEG2
SEG1 SECGMENT PARA 'DATAS
ASSUME DS : SEG

SECT ENIS
Sk SEGMENT PARA 'DATAS
ASSUME DS : SEG

SEG2 ENDS
LABEL : Assembler uses a location counter to keep track of how many bytes it is
from the start of a segment at any time. The LABEL directive is used to give a name to
the current value in the location counter. The label directive can be used to specify
destination for jump or call instruction or to specify reference to a data item. When label
i used as destination for a jump or a call, then the label must be specified as type near or

Microprocessors and Interfacing 3-55 B0OBE Instruction Set and ALP

as type far. When label is used to refer a data item it must be specified as tvpe byle,
type word, or type double word.

Example :
MEXT LABEL FAR ; Can jump to NEXT from
; another segment
MNEXT : MOV AX, BX ; Cannot do far jump directly to a label

; with a colon.
; Initialization of stack pointer using
; label directive

LENGTH : It is an operator which tells the assembler to determine the number of
elements in some named data item such as a string or array.

Example :
MOV BX, LENGTH STRING1 : Loads the Length of siring in BX

MACRO and ENDM : The macros in the programs can be defined by MACRDO
directive. ENDM directive is used along with the MACRO directive. ENDM defines the
end of the macro.

MODEL : It is available in MASM version 50 and above. This directive provides
shortcuts in defining segments. It is inilializes memory model before defining any
segment. The memory model can be SMALL, MEDIUM, COMPACT or LARGE. We can
choose the memory model based on our requirement by referring following table.

Model Code segments Data segments
Small U One
Medium Multiple One
Compact Cne Multipke
Large Multipte Multipda
Table 3.5

NAME : The name direclive is used at the start of a source program o give specific
names to each assembly module,

OFFSET : It is an operator which tells the assembler to determine the offset or
displacement of a named data item (variable) from the start of the segment which contains
it.

Example :
MOV AX, OFFSET MES] ; Loads the offset of vanable, MES] in

; AX register

Microprocessors and Interfacing 3 -56 BOBE Instruction Set and ALP

ORG : The assembler uses a locabion counter to account for its relative position in a
data or code segmoent.

Format : ORG expression
Example : ORC 1000H, Set the location counter to 1000H

FTR : PTR is used to assign a specific type to a variable or to a label. It is also used to
override the declared type of a variable.

Example : WORD_LEN DW

MOV BL, BYTE PTR WORD_LEN ; Byte accesses byte from word

PAGE : The PAGE directive helps to control the format of a listing of an assembled
program. At the start of a program the PAGE directive specifies the maximum number of
lines to list on a page and the maximum number of characters on a line.

Format : PAGE [length], [width]
Example : PAGE 52, 132 ; 52 lines per page and 132 characters per line

PROC and ENDP :

PROC : The procedures in the programs can be defined by PROC directive. The
procedure name must be preseni, must be unique, and must follow naming conventions
for the language. After the PROC directive the term NEAR or FAR are issued to specify
the type of the procedure.

Example : FACT PROC FAR ; Identifies the start of a procedure named FACT and tells
the assembler that the procedure is far (in a segment with a different name from that
which contains the instruction which calls the procedure)

ENDP : ENDP directive 1s used along with the PROC directive. ENDP defines the end
of the procedure,

PUBLIC : Large programs are usually written as several separate modules. Each
module is individually assembled, tested and debugged. When all the modules are
working correctly, their object code files are linked together to form the complete program.
In order for the modules to link together correctly, any variable name or label referred to
in other modules must be declared public in the module where it is defined. The PUBLIC
directive is used to tell the assembler that a specified name or label will be accessed from
other modules.

Format : PUBLIC Symbol [... .]

Microprocessors and Interfacing 3-57 8086 Instruction Set and ALP
Example : PUBLIC SETPT ; Makes SETPT available for other modules.

SEGMENT and ENDS : An assembly program in .EXE format consists of one or more
segments. The start of these segments are defined by SEGMENT directive and the ENDS

statement indicates the end of the segment.
Format : name SEGMENT [options] ; Begin segment

name ENDS ; End segment
Example : CODE SEGMENT

CODE ENDS

SHORT : A short is a operator. It is used to tell the assembler that only 1-byte
displacement is needed to code a jump instruction. If the jump destination is after the
jump instruction in the program, the assembler will automatically reserve 2-bytes for the
displacement. Using the short operator saves 1-byte of memory by telling the assembler
that it only needs to reserve l-byte for this particular jump. The short operator should be
used only when the destination is in the range of -128 bytes to +127 bytes from the
address of the instructions after the jump.

Example : JMP SHORT NEAR_LABEL

STACK : This directive provides shortcut in definition of the stack segment. General
format for this directive is as shown below.
stack [size)
The default size is 1024 bytes.

Example : .STACK 100 ;This reserves 100 bytes for the stack operation.

When stack is not used in the program stack command can be omitted. This will
reserve in the waming message “no stack segment” after linking the program. This
waming may be ignored.

TITLE : The TITLE directive help to control the format of a listing of an assembled
program. TITLE directive causes a title for a program to print on line 2 of each page of the
program listing. Maximum &0 characters are allowed as title.

Format : TITLE text

Example : TITLE Program to find maximum number

TYPE : It is an operator which tells assembler to determine the type of specified
variable. Assembler determines the type of specified variable in number of bytes. For byte
type variable the assembler gives a value of 1. For word type variable the assembler gives
a value of 2 and for double word type variable the assembler gives a value of 4.

Microprocessors and Interfacing 3-58 8086 Instruction Set and ALP

3.12.1 Summary of Assembler Directives

Directive Action
ALIGH aligns next variable or instruction io byte which is multiple of operand
ASSUME selects segment register(s) to be the default for all symbol in segment(s)
COMMENT indicates a comment
DB allocates and optionally initializes byles of storage
DWW aliocates and opticnally initializes words of storage
B aliocates and optionally initializes doublewords of siorage
Do allocates and optionally initializes guadwords of storage
DT allocates and optionally initializes 10-byte-long storage units
EMD lerminates assembly; optionally indicates program entry point
ENDM terminates a macro definition
ENDP marks end of procedure definition
ENDS marks end of segment or structure
EQU assigns expression o name
EVEN aligns next variable or instruction to even byte
EXITM lerminates macro expansion
EXTRMN indicales externally defined symbols
LABEL creates a new labal with specified type and cument location countar
LOCAL daclares |local varables in macro definition
MACRD starts macro definition
MODEL specifies mode for assembling the program.
ORG sels location counter to argument
FAGE sets length and width of program Nsting; generates page break
PROC starts procedure definition
PTR assigns a specific type fo a variable or to a labsal
PuUBLIC identifies symbols to be visible outside module
TITLE defines the program |IEIir1-'E title

Table 3.6

3.12.2 Variables, Suffix and Operators

Variable : A variable is an identifier that is associated with the first byte of data item. In
assembly language statement : COUNT DB 20H, COUNT is a variable.

Example : Array DB 10, 20, 30, 40, 50

Here, array is the variable which is associated with the first byte of the
data item, i.e. 10.

Microprocessors and Interfacing 3-59 BO8E Instruction Set and ALP

Suffix : In assembly language programming base of the number of indicated by a suffix
as follows :

« B - Binary
* D - Decimal
* - Octal

H - Hexadecimal

The default is decimal. The first digit in a hexadecimal number must be 0 through
9; thercfore, if the most significant digit is a letter (A-F), then it must be prefixed
with a 0.

Examples : 1010 B = 1010,

2967 D = 2967 = 2967
JF2AH = 2F2A,
0OB129H = B129y,

Operators : Arithmetic vperators : “+7, “=", “+"_and /",
Logical Operators : “AND”, “OR", “"NOT, and “XOR".
Logical operators are specially used for binary operands.

3.12.3 Accessing a Procedure and Data from another Assembly Module

As mentioned earlier, usually a large program is divided into a series of modules.
Each module is individually written, assembled, and tested. The object code files for the
modules are then linked together to generate a linked file or executable file.

In order fur a linker to be able to access data or a procedure in another assembly
module correctly we have to use two assembly language directives : PUBLIC and EXTREN.

In the module where a variable or procedure is declared we must use the PUBLIC
directive to let the linker know that the variable or procedure can be accessed from other
modules.

In a module which calls a procedure or accesses a variable in another module, we
must use the EXTEN directive to let the assembler know that the procedure or variable is
not in this module but it has to access from another module, The EXTREN statement also
gives the linker some needed information about the procedure. For example : EXTRN
ROUTINE : FAR, TOKEN : BYTE tells the linker that ROUTINE is a FAR procedure and
TOKEN is a variable of type byte.

imp Example 1 : “Filel.asm” contains a program segment which calls a subroutine (procedure)
in “File2.asm”. Give the necessary declarations in Filel.asm and “File2 asm” (lo make
the subrouting Lj’ ﬁj’f?,.rr:uu apatlaile o fﬂr]‘.ﬂsm el s nod J'm'nffy aisagilable) gnd Hie
assembling and linking to obtain the executable file.

Microprocessors and Interfacing 3-60 B0B6 Instruction Set and ALP

Solution : Filel.asm File2.asm
EXTEN ROUTINE : FAR PUBLIC ROUTINE PROLC FAR
ROUTINE EMNDP

3.13 Assembly Language Programming

A program is a set of instructions arranged in the specific sequence to do the specific
task. It tells the microprocessor what it has to do. The process of writing the set of
instructions which tells the microprocessor what to do is called “Programming”. In other
words, we can say that programming is the process of telling the processor exactly how to
solve a problem. To do this, the programmer must “speak” to the processor in a language
which processor can understand.

Steps Involved in Programming

Specifying the problem : The first step in the programming is to find out which
task is to be performed. This is called specifying the problem. If the programmer
does not understand what is to be done, the programming process cannot begin.

Designing the problem-solution : During this process, the exact step by step
process that is to be followed (program logic) is developed and written down.

Coding : Once the program is specified and designed. it can be implemented.
Implementation begins with the process of coding the program. Coding the
program means to tell the processor the exact step by step process in ifs
language. Each processor has a set of instructions. Programmer has to choose
appropriate instructions from the instruction set to build the program.

Debugging : Unce the program or a part of program is coded, the next step is
debugging the code. Debugging is the process of testing the code to see if it does

the given task. If program is not working properly, debugging process helps in
finding and correcting errors.

To write a program, programmer should know :

-

L

How to develop program logic?
How to tell the program to the processor?
How to code the program?

How to test the program?

Microprocessors and Interfacing

3-61 8086 Instruction Set and ALP

Flow Chart
To develop the programming logic

programmer has to write down various actions

which are to be performed in proper sequence. The flow chart is a graphical tool that

allows programmer to represent various

actions which are to be performed. The graphical

representation is very useful for clear understanding of the programming logic.

GHED

.

The Fig. 3.21 shows the g-raphic ﬁymbulﬁ used in
flow chart.

Owal : It indicates start or stop operation.
Arrow : It indicates flow with direction.

Parallelogram : It indicates input/output
operation.

Rectangle : It indicales process operation.
Diamond : It indicates decision making
operation.

Double sided rectangle : It indicates execution of

pre-defined process (subroutine).

Circle with alphabet : It indicates continuation.
A: Any alphabet
The Fig. 3.22 shows sample flow chart.

-)

/mm

parameters

IE:almmthm

Process

[==7

Stop

Fig. 3.22 Sample flowchart

Microprocessors and Interfacing 3-62 8086 Instruction Set and ALP

3.13.1 Assembly Language Programs

A program which has simply a sequence of the binary codes for the instructions is
called machine level language program. This binary form of the program is referred to as
machine language because it is the form required by the machine. However, to write a
program in machine language, programmer has to memorize the thousands of binary
instruction codes for a processor. This task is difficult and error prone.

To make programming easier, usually programmers write programs in assembly
language. They then translate the assembly language program to machine language so that
it can be loaded into pemory and executed. Assembly language uses two, three or four
letter words to represent each instruction types. These words are referred to as
mnemonics. The letters in an assembly language mnemonic are usually initials or a
shortened form of the English word(s) for the operation performed by the instruction. For
example, the mnemonic for addition is ADD, the mnemonic for logic AND operation is
AND, and the mnemonic for the instruction for copy data from one location to another is
MOV, Therefore, the meaning expressed by mnemonics help us to remember the operation
performed by the instruction.

Assembly language statements are usuvally written in a standard form and assembly
language has its own unique syntactical structure, such as requiring upper case or lower
case, or requiring colons after label definitions. Here we discuss the common features that
assembler shares.

The assembly text is wsuvally divided into fields, separated by spaces and tabs. A
format for a typical line from assembly language program can be given as

Label : Mpemonic Operandl, Operand2 ; Comment

The first field, which is optional, is the label field, used to specify symbolic labels. A
label is an identifier that is assigned to the address of the first byte of the instruction in
which it appears. As mentioned earlier, the presence of a label is optional, but if present,
the label provides a symbolic name that can be used in branch instructions to branch to
the instruction.

The second field is mnemonic, which is compulsory. All instructions must contain a
mnemonic. The third and following fields are operands. The presence of the operands
depends on the instruction. Some instructions have no operands, some have one, and some
have two. If there are two operands, they are separated by a comma.

The last field is a comment field. It begins with a delimiter such as the semicolon and
continues to the end of the line. The comments are for our benefits, they tell us what the
program is trying to accomplish. Fig. 3.23 shows a typical 8086 assembly language
instruction.

Microprocessors and Interfacing 3-63 8086 Instruction Set and ALP

MT /En-l.ln:e operand

AGAIN : ADD AX, price [BX] ; Add price of item to AX
Labl Destinalion operand Comment

Fig. 3.23 Typical assembly language instruction
The Table 3.7 shows the comparison between machine level and assembly languages.

Sr. No. Machine Language Assembly Language

1. Language consisis of binary codes | Language consists of mnemonics which
which specify the operation specify the operation,

2. Processor dependent and hence Processor dependent hence requires
requires knowledge of internal knowledge of inlernal details of
details of processor to write 8 processor o write 8 program.
program.

3. Programs require less memory Frograms require less memory.

4. Programs have less execulion Programs have less axecution timea.
time,

5. Program development is difficult. Frogram development is simpler than

machine language.

6. It is not user friendly. i It is less user friendly.

Table 3.7 Comparison between various microcomputer languages

3.13.2 Assembly Language Programming Tips

We know thal a program is a set of instructions arranged in the specific sequence to
perform the specific task. For writing a program for specific task, programmer may find a
number of solutions (instruction sequences). A skilled programmer has to choose an
optimum solution out of them for that specific task. The technique of choosing an
optimum solution is an art and we can name this as an art of assembly language
programming. In this section we will see some tips regarding this with the help of
examples.

* What is an optimum solution ? : The optimum solution is the solution which
takes minimum memory space for the program and minimum time for the
execution of a task. When we say memory space for the program we consider
space for program storage (program length), space for data storage and space
used by the stack.

* Use of proper instructions : Many times we come across the situation where
more than one set of instructions are available to perform particular function. For
example, if the function is add 01 in the BX register of 8086 we have two
options : ADD BX, 0001H or INC BX. In such situations we must check the space
and time for both the options and then select the option which requires less

Microprocessors and Interfacing 3-64 BOB6 Instruction Set and ALP

space and time. Let us see the space and time required for these two
instructons. The instruction ADD BX, 0001H is 4 bjr'l::r: instruction and requires 4
clock cycles to execute. On the other hand, INC BX is a single byte instruction
and requires 2 cycles for the execution. That is instruction INC BX requires less
memory space and execution time than instruction ADD BX, 0001H. Therefore,
programmer must use INC BX instruction in such situation.

» Use of advanced instructions : We must optimally utilize the processor
capabilities. For example, when it is necessary to write a program o move a
block of data from the source to destination location, a programmer may
initialize a p~inter to indicate source location, a pointer to indicate destination
location, a counter to count the number of data elements to be transferred. After
transfer of one data element from source to destination location programmer
may use INC, DEC and JNZ instructions to increment source and destination
pointers, decrement counter and to check whether all data elemenis are
transferred or not, respectively.

The same task can be implemented by MOVS instruction supported by 8086. Let us see
the part listing of the program with both the approaches and then we compare them.

1. Part listing of program with general approach

MOV S5I, 1000H ; Initialise source pointer
MOV DI, 2000H ; Initialize destination pointer
MOV CX, O0020H i Initialise counter

BACK : MOV AX, [S5I] ; Get data element from scurce
MOV [DI], AX : Store it at destination
IHC 51 ; Increment Ssource pointer
IHNC DI ! Increment destination pointer
DEC CX i Decrement counter
JHE BACEK { If count is not zZero, repeat

2. Part listing of program with MOVS instruction
MOV S5I, 1000H i Imitialise source pointer
MOV DI, 2000H i Imitialise destination pointer
MOw CX, 0020H : Imitialise counter
CLD ; Clear direction flag

REF MOVSE i Move the entire block

Looking at the two programs we can easily notice that the MOVSB instruction needs
neither counter decrement and jump back nor pointer update instructions. All these
functions are done automatically. Because MOVSB instruction copies multiple bytes from
source to destination. After each byte transfer it automatically increments SI and DI
pointers by 1 (since DF is 0) and decrements count in CX register and it repeats this
process until CX = 0.

In the second approach, we require less number of instructions and memory space. As
number of instructions are less, fetching time required for the instructions is also saved
and hence we can say that the second approach requires less memory space and less time
to execute the same task. So skill programmer uses second approach.

Microprocessors and Interfacing 3-65 8086 Instruction Set and ALP

* Use of proper addressing modes : We know that the different ways that a
processor can access data are referred to as addressing modes. If we compare the
various addressing modes reagrding access time required For ACCERRING i'rEH.‘n'lt‘Ld.*-,
we can easily make out that the register addressing takes less time o access
operand than the index and indirect addressing modes. It is obvious that when
operands are available in CPU registers they are immediately available for
operation; however when they are in memory we have to fetch them from
memory. Fetching operands takes more time, 5o it is advisible to store most of
the operands in the CPU registers. We know that CPU registers are limited in
numbers. Therefore, when they are not enough then only we should use memory
space for storing the operands.

¢ Prepare documentation : Program must provide enough information so that
other users can utilize the program module without having to examine its
internal structure. So along with program it is advised to give the following
information.
1. Du:-;:ripti:m of the purpose of the program module.
2. In case of subroutine program list of passing parameters and return value.
3. Register and memory locations used.
4. Proper comments for each instruction used.
3.13.3 Programming with an Assembler
Let us see what are the steps involved in developing and executing assembly language
programs. Fig. 3.24 shows these steps. The left side of the figure shows the ime period, at
which each step in the overall process takes place.

Assembly language
Tima pariod program Bl Whlel le - - = = s = —c e e — - ————— -
in @y lext editor :
Program listing I i
i
i
i
Asgemble Me ———— (Assamblar Emor messages |- - -
]
Object code Cther object code
MoaUle in Dinary machdes kom library

onime (i

Pl
e
| Processor
= aEn

| TTEITROTY
PIE]
L5

LOBITT e 'L"‘“"_) 0]

Execution time .
Fig. 3.24 Steps in program development and execution

Linked modules |

Microprocessors and Interfacing 3 -66 8086 Instruction Set and ALP

The first step in the development process is to write an assembly language program.
The assembly language program can be written with an ordinary text editor such as word
star, edit and so on. The assembly language program text is an input to the assembler. The
assembler translates assembly language statements to their binary equivalents, usually
known as object code. Time required to translate assembly code to object code is called
assemble time. During assembling process assembler checks for syntax errors and displays
them before giving object code module.

The object code module contains the information about where the program or module
o be loaded in Memaory. If the object code module is to be linked with other H&p:‘ll‘ﬂtEJ!].-‘
assembled modules then it contains additional linkage information. At link time, separately
assembled modules are combined into one single load module, by the linker. The linker
also adds any required initialization or finalization code to allow the operating system to
start the program running and to return control to the operating system after the program
has completed. Most linkers allow assembly language modules to be linked with object
coile modules compiled from high-level languages as well. This allows the programmer to
insert a time-critical assembly language routines, library modules into a program.

At load time, the program loader copies the program into the computer’s main
memory, and at execution time, program execulion begins.

3.13.3.1 Assembling Process

As mentioned earlier, assembler translates a source file that was created using the
editor into machine language such as binary or object code. The assembler reads the
source file of our program from the disk where we saved it after editing. An assembler
usually reads our source file more than once.

The assembler generates two files on the floppy or hard during these two passes. The
tirst file is called the object file. The object file contains the binary codes for the
instructions and information about the addresses of the instructions. The second file
generated by the assembler is called assembler list file. This file contains the assembly
language statements, the binary code for each instruction, and the offset for each
instruction. -

In the first pass, the assembler performs the following operations :

1. Reading the source program instructions.

2 Creating a symbol table in which all symbols used in the program, together with

their attributes, are stored.

3. Replacing all mnemonic codes by their binary codes.

4. Detecting any syntax errors in the source program.

5. Assigning relative addresses to instructions and data.
On a second pass through the source program, the assembler extracts the symbol from
the operand field and searches for it in the symbol table. If the symbol does not appear in

Microprocessors and Interfacing 3 - 67 8086 Instruction Set and ALP

the table, the corresponding statement is obviously erroneous. If the symbol does appear in
the table, the symbol is replaced by its address or value.

We can use a suitable Editor to type .asm file. We can convert object file from .asm file
using popular assemblers MASM (Microsoft macro assembler) or TASM (Turbo assembler).
The command on command prompt performing this operation is as given below

C:h MASMM BINY > MASM myprog.asm;

where myprog.asm is name of the .asm file which is to be converted to .obj file.

3.13.3.2 Linking Process

A linker is a program used to join together several object files into one large object file.
When writing large programs, it is uwsually much more efficient o divide the large
program into smaller modules. Each module can be individually written, tested and
debugged. When all the modules work, they can be linked together to form a large
functioning program.

The linker produces a link file which contains the binary codes for all the combined
modules. The linker also produces a link map which contains the address information
about the link files. The linker, however, does not assign absolute addresses o the
program, it only assigns relative addresses starting from zero. This form of the program is
said to be relocatable, because it can be put anywhere in memory to b!.' run.

The command on’ command prompt for converting .obj file to .EXE file is as given
below :

C: % MASM N\ BIN A > LINK myprog.oby;

3.13.3.3 Debugging Process
A dl:buggi.:r is a program which allows us to load our object code program ik system
memory, execule the program, and debug it.

How does a debugger help in debugging a program ?

l. The debugger allows us to look at the contents of registers and memory locations
after our program runs.

2. It allows us to change the contents of register and memory locations and rerun the

Pr:_:-gram.

3. Some debugger allows us to stop execution after each instruction s0 we can check
or alter memory and register contents.

4. A debugger also allows us to set a breakout at any point in our program. When we
run a program, the system will execute instructions up to this breakpoint and stop.
We can then examine register and memory contents to see if the results are correct
at that point. If the results are correct, we can move the break point to a later
point in our program. If resulis are not correct, we can check the program up o
that point to find out why they are not correct.

In short, debugger tools can help us to isolate problems in our program.

Microprocessors and Interfacing 3-68 8086 Instruction Set and ALP

Debug Commands

Command Command Syntax and Description
Assembler - A [address)
A command allows you lo anter he mnemonic, or human-readable, instructons
directly.
Compare - C range address
C command compares two memory blocks.
Dump - D [range]
O command displays a portion of mamory in hex and ASCIL
Enter = E address [list]
E command places individual bytes in memaory,
Fill - F range list
F command fills a range of memory with a single value or a list of values.
GO — G |- address] [addresses]
G command execute the program in memory.
Hex - H value 1 valua 2
H command performs addition and subtraction on two haxadecimal numbers,
Load ~ L [address] [drive] [first sector] [number]
L command loads a file (or disk sectors) info memony.
Move - M range address
M command copies a block of data from one memory kocation to ancther.
Mame N [pathname] [arglist]
N command initializes a filename (and file control block) in memory before using
load or wrile commands.
Procesd - P [= address] [number)
P command traces the program without enfering the subroutineg or interrupt. If
such instruction appears in the program it executes entire subrouting or intermupt
routing and immediately proceeds to next instruciton in the segquence.
Qs =
Q command quits from debug.
Register = R [register]
R command displays the register contents on the screen.
Search = 5 range list
5 command search a range of addresses for a list of byles or a sfring.
Trace - T [= address] [value]
T command execute one of more instructions from the current C3 @ IP localion or
oplional address, if spacified.
Unassemble - U [range]
U command transiates memary into assembly language mnemonics.
Write - W [address] [drive] [first sector] [number]
W command wrile a block of memory 1o a file or to individual disk sectors.

See detail description of debug command in Appendix C.

Microprocessors and Interfacing 3-69 MImmnE‘ﬂpns-t-ndALP

3.14 Assembly Language Example Programs .
Program 1 : (Softcopy of this program, Fl.asm is available at www.vtubooks.com)

HAME Addition
FAGE 32,80
TITLE 8086 assembly language program to add two numbers.
Jmodel small
stack 100
.data
Hol DB &3H ;j First number storage
Ho2 DE ZEH ; Second number storage
Result oW 7 ; Double byte reserved for result
L cxde
START: MOV AX,@data i [Inmitialises
MOV DS, AX i data segment]
MOV AL,MNOL1 ; Get first pnumber in AL
ADD AL, NOZ i Add second to it
ADC AH; 00H i Put carry in AH
MOV Result,AX ; Copy result to memory
END START
Program 2 : (Softcopy of this program, PLasm is available at www.vtubooks.com)
HAME Average
PAGE 52,80
TITLE Bl08e ALP to find average of two numbers.
.model small
.atack 100
.data
Hol DB &3H ; First number storage
MoZ2 DB 2EH ¢ Second number storage
hvg DB 7 ¢ Average of two numbers
. Code
START: MOV AKX, Bdata i [Imitialises
MOV DS, AX ; data segment |
MOV AL, HO1 ; Get first number in AL
ADD AL, HO2 ; Add second to it
ADC AH, 00H i Put carry in AH
SAR RX,1 i Divide sum by £
MO Avg, AL ;i Copy result to memory
END START
Program 3 : (Softcopy of this program, F3.asm is available at www.vtubooks.com)
HAME Maximum number
PAGE 52,80
TITLE 8088 ALP to find maximum in the array.
.model small
.atack 100

.datca

Microprocessors and Interfacing 3-70 8086 Instruction Set and ALP

ARRAY DB &3H,32H,45H,75H,12H,42ZH, 094, 14H, 56H, 38H
' ¢ Array of ten numbers

MRX CE © ; Maximum number
Ccode
START: MOV AKX, Bdata f [Initialises
HOV DS, AX H data segment]
*0R DI,DI ¢+ Initialise pointer
MOV CL, 10 § Initialise counter
LEA BX;ARRAY ; Initialise base pointer for array
MOW AL, MAX i Get maximum number
BACK: CMF AL, [BX+DI] ; Compare number with maximum
JHC SEIP
MOV DL, [BX+DI} ; | If number > MAX
MOV AL, DL » MAX = number |
SKIP: INC DI ;: Increment pointer
DEC CT ; Decrement counter
JHE BACK ; IF count = { stop
; otherwise go BACK
MOV MAX, AL : Store maximum number

END START
Program 4 : (Softcopy of this program, P4d.asm is available at www.vtubooks.com)
NAME Find number

PAGE 52,80

TITLE 8086 ALP to search a number in the array.
.model small
.Etack 100
.data

ARRAY DB 63H, 32H, 45H.?5H.12H 42H,09H, 14, 56H, 38H
Array of ten numbers
Number to be searched

£

SER_NO DE 09H

a

SER_POS LB 7 ; Position of the searched number

Lcode

ETART: MOV AX, Bdata : [Imitialises
MOV DS, AX ; data segment]
MOV ELS,RX
MOV CX, 000AH ; Initialise counter
LEA DI;AR=AY : Initialize baze pointer for array
MOV AL, SER_NO ;7 Get the number to be searched inm AL
CLD ; Clear direction flag
REFNE SCAS ARRAY ; Repeat until match occurs or CX = 0
MOW AL, 10 i [Find the searched pumber position
SUB AL,CL i in the array 1f SER_POS5 is 0
MOV SER_POS,AL j number is not in array; otherwise

- SER_PO5 gives the position of
H number in the Aarray]
EWD START

Program 5 : (Softcopy of this program, P5.asm is available at www.vtubooks.com)

HAME Array sum
PAGE 52,80

Microprocessors and Interfacing

3-M

TITLE
madal small
.data

ARRAY

5UM
«code
START : HOW
MOV
MOV
XOR
LE&
M
MO
ADD
INC
DEC
JHE
END

BACK:

8088 ALP to find sum of numbers in the array.

DB 12H,24H,26H,63H, 25H, 86H, 2FH, 33H, 10H, 35H

oW 0

AX, @data
DS, AX
CL, 10
DI, DI
BX, ARRAY
AL, [BX+DI]
AH, OOH
SUM, AX
DI

CL

BACE
ETART

Kl
F

s ma e

ms ma ma

[Initialise

data segment]
Initialise counter
Initialise pointer
Initialise array base pointer
Get the number
Make higher byte (00h
SUM = SUM + number
Increment pointer
Decrement counter
If not 0 go to back

Program 6 : (Softcopy of this program, Pé.asm is available at www.viubooks.com)
Separate even-odd

NAME

PRGE

TITLE
.model amall
LSTACE 100
.data

ARBARY

ARR_ODD

ARR_EVEN
L Code
START : MOV
MOV
0
XOR
XOR
LEA
M
AND
JE
LEA
)
MO
INC
JHP
LEA
MOV
MOV
INC
IHC
DEC

BACK:

NZXKT:

SKIP:

52, 80

Separate even and odd numbers in the array.

DB 12H,23H,26H,63H, 25H, 86H, 2FH, 33H, 10H, 35H

DE 10
DB

AN, Bdata
D5, Ak

CL, 10
DI,DI
51,51

BF, AREAY
AL, DS: [BP]
AL,01H
HEXT
BX,ARR OCD
MH [EH+DI]
ARR_ODD, AH
DI

SEIF
BX,ARR_EVEN
AH; [BX+51]

AH, ARR_EVEN

51
BE
CL

w4 W

DUF (2)
10 DUp

{7

[Initialise

data segment]

Initialise counter

Initialise odd pointer
Initialise even_pointer
Initialise array base pointer
Get the number

Mask all bits except LSE

[f LSBE = 0 go to next

[Otherwise

Initialise pointer to odd array
and save number in odd array |
Increment odd pointer

[Imitialise pointer
to even array and save number
in even array |
Increment even pointer
Increment array base pointer
Decrement counter

8086 Instruction Set and ALP

Microprocessors and Interfacing 3-T2 8086 Instruction Set and ALP

JNE BACK ; If not 0 go to back
END ETART
It is important o note that programs discussed so far do not accepl any input from

keyboard and do not display any result on the video screen. This is done purposely to
maintain simplicity. To accept input in various formats from keyboard and to display data
on the video screen we have to use routines provided by Disk Operating System (DO5).
These routines are discussed in Chapter 9. The programs given in the subsequent sections
use routines provided by DOS. Therefore, students are suggested to refer these routines
before further reading the remaining part of this text.

3.15 Timings and Delays

In the real time applications, such as traffic light control, digital clock, process control,
serial communicabion, it is important to keep a track with fime. For example in traffic light
control application, it is necessary to give ime delays between two transitions. These time
delays are in few seconds and can be generated with the help of executing group of
instructions number of times, This software timers are also called bme delays or software
delays. Let us see how to implement these ime delays or software delays.

As you know |r|ri1."rupnh:1.1umr system consists of two basic components, hardware and
software, The software component controls and operates the hardware to get the desired
output with the help of instructions. To execute these instructions, microprocessor takes fix
time as per the instruction, since it is driven by constant frequency clock. This makes it
possible to introduce delay for specific time between two events. In the following section
we will see different delay implementation technigues.

3.15.1 Timer Delay using NOP Instruction

NOFP instruction does nothing but takes 3 clock cycles of processor time to execute. So
by executing NOF instruction in between two instructions we can get delay of 3 dock
cycles.

3.15.2 Timer Delay using Counters

Counting can create time delays. Since the execution times of the instructions used in a
counting routine are known, the initial value of the counter, required to get specific time
delay can be determined.

Clock cycles reguired

MOS CxX, COUNT ;s Load count i
BACE DEC Cx s Decrement count 2
JHNZ BACK ; IE count = 0, repeat 16/4

In this program, the instructions DEC CX and [NZ BACK execute number of times
equal to count stored in the CX register. The time taken by this program for execution can
be calculated with the help of clock cyeles. The column to the right of the comments
indicates the number of clock cyeles required for the execution of each instruction. Two
values are specified for the number of cock cycles for the |NZ instruction. The smaller

Microprocessors and Interfacing 3-73 8086 Instruction Set and ALP

value is applied when the condition is not met, and the larger value is applied when it is
met. The first instruction MOV CX, count is executed only once and it requires 4 clock
cycles. There are count-1 passes through the loop where the condition is met and control
is transferred back to the first instruction in the loop (DEC CX). The number of clock
cycles that elapse while CX register is not zero are (count=1) x (2 + 16). On the last pass
through the loop the condition is not met and the loop is terminated. The number of clock
cycles that elapse in this pass are 2 + 4.

- Total clock cycles required to execute the given program
= +{Count - I]x{2+16]+{2+d]

h'I'L'I"lul'f:li Coami

Loog u.:rmp
For count = 100, the number of clock cycles required are
= 4+ (100 -1)=(2=16)+(2+4)
= 1792

Assuming operating frequency of 8086 system 10 MHz,

Time required for 1 clock-cycle = = (1.1 psec

1
10 MHz
- Total time required for execution of a given program with count equal to 100 is
179.2 psec (1792 = 0.1).

In the above example, we have calculated the time required for the execution of
program or delay introduced by the program when count value is given. However, in
most of the situations we know the waiting time or delay time and it is necessary to
determine what count should be loaded in the CX register to get the specified delay. Let
us consider that we have to generate a delay of 50 ms using an 3086 system that runs at
10 MHz frequency. Then using same program we can calculate the count value as follows :

Step 1 : Calculate the number of required clock cycles

Required delay time
Time for 1 -clock cycle
50 ms
0.1 ps

Number of required clock cycles

= 500 000

|

Step 2 : Find the required count

Nlll‘.lleT of req‘mred clock cycles -4 (2 + 4}
" Execution Time for one loop

Count

_ 500000-4-6
- (16 +2)

= 27778 = 6CHZH

Microprocessors and Interfacing 3-T4 8086 Instruction Set and ALP

3.15.3 Timer Delay using Nested Loops

In this program one more external loop is added to execute the internal loop multiple
times. 50 that we can get larger delays. The inner loop is nothing but the program we
have seen in the last section.

MOV BX, Multiplier count Load multiplier count

REFE : MOV CX, COUNT { Load count

BACK : DEC CX { Decrement count
JHZ BACK { If count = 0, repeat
DEC BX ; Decrement multiplier count
JHZ EEPE ¢ If not zero repeat

In the delay calculations of nested loops, the delay introduced by inner loop is very
large in comparison with the delay provided by MOV BX, COUNT, DEC BX and [NZ
instructions. Therefore, it is not necessary to consider the last loop for the external loop
delay calculations separately. The inner loop delay calculations will remain as it is.

. Total clock cycles required to execute the given program

= |] +(count -1) = (2 +16) + {2+4}]‘x multiplier count
MOV CX, Count Luop l.-tlnulp

For count

100 and multiplier count 50, the number of clock
cycles required are

[4+ (100 =1)= (2 + 16) + (2 + 4)] = 50
= B960

Assuming operating frequency of 8086 system 10 MHz,

Total time required for execution of a given program

= H9600 x 0.1 psec = 8.96 ms

i Example 2 : Write an 8086 ALP lo generate a delay of 100 ms, if 8086 system frequency

s 10 MHz.
Solution :
Program :
MOV CX, COUNT 74
BRCH - DEC CX P2
JHNZ BACK ¢ 16/4

Step 1 : Calculate the number of required clock cycles

Required delay time
Time for 1 clock r:}‘ﬂ'ﬁ

Mumber of rm_]uin.:r_i clock l.'_'!.l'l:]l;':i

o M0ms 600 000
0.1 ps

Microprocessors and Interfacing 3-75 8086 Instruction Set and ALP

Step 2 : Find the required count

MNumber of required clock cycles —4—(2+ 4) .

Execution time for one loop 1

Count

1000000-4-6
C e+

= 55556 = D904H

iy Example 3 : Write an 8086 ALP to generate a delay of 1 minute if 8086 system frequency

= 10 MHz.
Solution :

PFrogram

MOV BY, multiplier count

REFE : MOV CX, Count HE

BACHE DEC CX P2
JNZ BACK ; lie/4
DEC BX
JNZ REPE

Step 1 : Calculate the delay generated by inner loop with maximum count (FFFFH)

Delay generated by inner loop for count (FFFFH = 65535)
= |4+ (66535 = 1) % (2 + 16) + (2 + 4)] = 0.1 ps
= 118.1422 msec
Step 2 : Calculate the multiplier count to get delay of 1 minute

o ~ Required delay
multiplier count = Delay provided by inner loop

1 = 60 sec
118.1422 m sec

509 = 1FDH

3.16 Data Conversions

Before going to write and execute any assembly language program on a computer we
must understand which type of data processor understands and which type of data user
understands, and how tl‘w’_',r communicate with each other. User communicates with
computer using input devices and computer gives outcome of process or result on the
display devices or hardcopy devices such as printer or plotter. Most commonly used input
device is keyboard and most commonly used output device is a display device, video
monitor. These devices understand the information in ASCIl format. Keyboard gives the
pressed key number or character in its ASCII equivalent and for display certain number or
character we have to send the ASCII equivalent of the number or character to the display

Microprocessors and Interfacing 3-T6 8086 Instruction Set and ALP

device. On the other hand, processor does not understand the ASCII format. It uses binary
numbers. Therefore, it is necessary to convert input from keyboard to its binary equivalent
(ASCII to binary conversion) and convert processed data by processor into ASCII format
for the display (binary to ASCIl conversion). Let us see how we can perform these
conversions. In this secton we study the routines for these conversions. Once we
understand these routines we can use these routines to accept input using keyboard and to
display data on video monitor.

3.16.1 Routines to Convert Binary to ASCII
There are two ways to convert binary number into its ASCIH equivalent :
+ By the AAM instruction if the number is less than 100.

= By a series of decimal divisions (divide by 10).

3.16.1.1 By AAM Instruction (For number less than 100)

The AAM instruction converts the value in AX into a two-digit unpacked BCD number
in AX. For example, if number in AX is 0059H (89 decimal) before execution of AAM
instruction, AX contains 0809H after execution of AAM instruction. Now we can get ASCII
equivalent by adding 3030H o AX.

Algorithm :

AX | DO | 58— AAM ——=| 08 | 0D

AH AL AH AL

Mote : 59H —= B9 Decimal

ax | 08 | 08 |—= ADD AX, 3030H ——o ula.a
AH AL

Mote : 3BH and 39H are the ASCII equivalents of B and 9 respectivaly

1. Save contents of all registers which are used in the routine.
Get the data in AL register and make AH equal to 00.

3. Use AAM instruction to convert number in its decimal equivalent in the unpacked
format.

4. Add 30H in each digit to get its ASCII equivalent.
Display digit one by one using function 2 of INT 21H.
6. Restore contents of registers,

g

m

Microprocessors and Interfacing 3-T7

8086 Instruction Set and ALP

Flow Chart

Save registers
1

Gat th hex numbar

1

Convert it into s
decimal (BCD) equivalent

1

Unpack the BCD digits

1

Add J0H in each BCD
digit to get its ASCII equivalent

T
Display each digit

i

Restore registers

G

Routine : Convert Binary to ASCII for number less than 100

Passing Parameter : Hex number in AL register.
i Routine to convert binary number into its

i decimal and then ASCII equivalent,

ETA PROC NEAR

PUSH DX
FUSH BX
PUSH AX

g [
AAM
ADD
MOV
MO
MO
INT

AH, OOH

AX, 3030H
BX,; AX
DL, BH
RH, 02
Z1H

e WE W wE WE WG

Save registers

Clear AH

Convert to BCD
Convert to ASCII
Save result

and then display the number

Load first digit (MSD)

Load function number
Display first digit

(MSD)

Microprocessors and Interfacing 3-78 8086 Instruction Set and ALP

MOV DL, BL { Load second digit (L5SD)
INT 21H ; Display second digit (LSD)

POE AX ; Restore registers
POF BX

POP DX

RET

ENDP

Sample Progiom

;i Sample program to convert binary number into its
i decimal and them ASCII equivalent, and then display the number

MODEL SMALL ; Select SMALL mode
LSTACE 100 ; Initialization of stack
L CODE

MOV AL, S9H ; Load number in AL

CALL BTA ; Call routine

MOV AH, A4CH i [Exit

INT 21H : to DDS]

BTA FROC NEAR

PUSH DX : Bave registers

FUEH BX

PFUSH AX

MOV AH, O0H : Clear AH

AAM i Convert to BCD

ADD AX, 3020H i Conwert to ASCII

MOV BX,AX { Save. result

MOV DL, BH ; Load first digit (MSD)
MOV RH, D2 7 Load function number

INT 21H ; Display firast digit (MSD)
MOV DL, BL ; Load second digit (L3D)
INT 21H : Display second digit {(L3SD})
POF AX : Restore registers

POF BX

FOP DX

RET

ENDFP

EKD

C:\tasm\tasm s_bta.asm

Turbo Assembler Version 3.0 Copyright (c) 1988, 1991 Borland
International

Assembling file: s_bta.asm

Error messages: None

Microprocessors and Interfacing 3-79 8086 Instruction Set and ALP

Warning messages: None
Passes: 1
Remaining memory: 410k

Critasmitlink s bta.obj

Turbo Link Version 5.0 Copyright (¢} 1992 Beorland International
Ci\tasm\s_bta

B9

3.16.1.2 By Series of Decimal Division

If number is greater than 99 we can not use AAM instruction to convert given number
inn the BCD format. In such case we use scheme of dividing by 10 to convert any whaole
number from binary to an ASCII coded character string that can be di.-:pln:,'ed on the video
momitor.

Assume : Hex number is 7TBH

12 C
—=| 01
10) 123 AT 7BH
- 120 - 78H —=] 02
3 =| 03

02 + 30H —= 32H

03 4
1 1
10) 12 A) C %
= 10 - A
2 2 01 + 30H —= 31H
o/

)
107 1 AY 1 03 + 30H —= 33H
= 0 = 0

.1

—

Let us see the algorithm for converting number from binary to ASCII code.

Algorithm

1. Save contents of all registers which are used in the routine.

2. Divide the number by 10 and save the remainder on the stack as a significant BCD
digit.

3. Save the quotient as a number.

4. Repeat step 1 and 2 until quotient is 0.

5. Retrieve each remainder from stack and add 30 H to convert to ASCIl before
displaying or printing.

6. Restore contents of registers.

Microprocessors and Interfacing 3-80 8086 Instruction Set and ALP

Save registers
t

et the hax numiber

Flowchart

.|
Divide thie numbser by 10
and save remainder on the stack
1

Save the guobant as a numiber

y Yes

Geat the remainder

1
Convert lo ASCII and display

Routine : Convert Binary to ASCII
Passing parameter : 4-digit hex number in AX register.

Routine to convert d=digit hex into its decimal
and then to ASCII equivalent, and display it

#
rF
-
r

BTA4D PROC MNEAR

FUSH DX ;i Save registers
PUSH CX

Microprocessors and Interfacing 3-81 8086 Instruction Set and ALP

FUOSH BX

FUSH AX

MOV CX, D ; Clear digit counter

MOV BX, 10 : Load 10 decimal in BX
BACK: MOV DX, O : Clear DX

DIV BX ; Divide DX : AX by 10

PUSH DX i Save remainder

INC CX ;{ Counter remainder

OR AX, AX : Teat if quotient egual to zero

JHZ BACKE i 1f not zero divide again

MOV AH, 02H ; Load function number
DISP: POP DX : Get remainder

ADD DL, 30H : Convert to ASCII

INT 21H ¢ Display digit

LOOP DISE

FOP AX i Restore reglsters

FOF BX

POP CX

FOP DX

RET

ENDFP

EHD
Sample Program

; Sample program to convert 4-digit hex inte its decimal
; and then to ASCII equivalent, and display it

-MODEL SMALL ; Select SMALL model
+STACK 100 i Initialise stack segment
.CODE

MOV AX, 2ABCH

CALL BTAR4D + Call routine
MOV AH, 4CH i [EBxit
i

INT 21H

[-
el L E

to DOS]

Copyrighted material

L3

Microprocessors and Interfacing 3-82 8086 Instruction Set and ALP

INT 21H ¢ Display digit
LOGE DISP

POP. AX j Bestora Teglisters
PO BX

MOr X

POP DX

BET

ERDOE

END

Ci\tasm\tasm s btadd.asm
Turbo Assembler Version 3.0 Copyright (c) 1588, 1991 Borland
International

Assembling file: 8 bradd.asm
Ercor messages MNone
Warning messages: None
FPasses: 1
Remaining memory: 410k

Civtasmitlink s btadd.obj

Turbo Link Version 5.0 Copyright (c) 1992 Borland International
C:\tasm\s btadd

10940

3.16.2 Routine to Convert ASCIl to Binary

When we accept decimal number from keyboard we get ASCII code of each decimal
digit. This information from the keyboard must be converted from ASCII to binary. When
a single key is pressed conversion can be achieved by subtracting 30H. However, when
more than one key is typed conversion from ASCI to binary requires 30H to be
subtracted, but there is additional step. After subtracting 30H, the number is added to the

result after the prior result is first multiplied by 10.
. 256 Decimal — 100 H

Keystroke Keyinput SUB 30H Calculations
2—= 3H —= XXHIWH —= 02
«0A Multiply by 10
14H

5 —e 354 —s= 35H-30H —= 054 Add next digit
; 19H
«0AH Multiply by 10
FAH

B

g

B —= 36H ——= 36H-30H — 06H Add next digi
100H -=— Result

256 Decimal == 100H

Microprocessors and Interfacing 3-83 BOB6 Instruction Set and ALP

Let us see the algorithm for converting number from ASCI to binary code
Algorithm

1. Save contents of all registers which are used in the routine.

pa

. Make binary result = 0.

. Subtract 30H from the character typed on the keyboard to convert it to BCD.
4. Multiply the result by 10, and then add the new BCD digit.

L. Rupunt steps 2 and 3 untl the character l}rr&d 15 not an ASCI coded number.
6

b

. Restore register contents.

Save regisier contents

t

Result =0

Flowchart

——

Get the key input

Comvert il to BCD
{ Sub 30H) digit Save result
! I
Eam,lt=ﬁlaauﬂ:1l]+ﬂﬂﬂcﬁ§i Rest rﬂghl:ar tant

|

oy

=

I —

Microprocessors and Interfacing 3-84 B08E Instruction Set and ALP

Routine : Convert BCD number from keyboard to its Hex equivalent.
; Boutine to convert ASCII coded decimal from kevboard into 1ts HEX

equivalent
ATE PROC HEAR
PUSH CX ¢ Save registers
FUUSH BX
FUSH &AX
MOV CX, 10 : Load 10 decimal in CX
MOV BX, 0O ; Clear result
BACK: MOV AH,01H ;i |Read key
INT 21H ; with echo]
CMF AL, 0"
JB SKIP ; Jump if below ‘0
CMP AL;"9*
JA SKIF ; Jump if above 9f
S50UB AL, 30H ; Convert to BCD
PUSH AX ; Save digit
MOV AX, BX
MUL CX i Multiply previous result by 10
MOV BX, AX i Get the result in BX
POP AX ; Retrieve digit

MOV AH, OOH

ADD BY¥, AX

JMP BACK
SKIP: MOV NWUMBER, BX

POP AX

POP BX

POPF CX

Add digit value to result
Repeat

Save the result in HUMEBER
Bestore registers

Wy WE We Ws

Sample Program
; Sample program to convert ASCII coded decimal from keyboard into
its HEX equivalent

.MODEL SMALL

. DATA
NUMBER DW 2 { Define number

. CODE

START: MOV AX, RDATA ; [Initialize
MOV D5, AX ; data segement]
CALL ATE i convert ASCII coded decimal from

i keyboard inmto its HEX equivalent

MOV AH, 4CH ; [Exit to
INT 21H H DOs]

ATE PROC NEAR
PUSH CX ; Save registers
FUSH BX
PUSH AX
MOV CX, 10 § Load 10 decimal in CX
MOV BX, O i Clear result

BACK : MOV AH,01 ; [Read key
INT 21H ; with . echol
CHF AL, 0T
JB SKIP : Jump if below *0f

| CMP AL,'9"

Microprocessors and Interfacing 3-85 B0BE Instruction Set and ALP

C:\tasm\tasm s atb.asm
Turbo Assembler Version 3.0 Copyright (c) 1988, 1991 Borland

International #
Assembling file: s atb.asm

Error messages: Mone

Warning messages: None

Pasges: 1

Remaining memory: 410k

C:\tasm\tlink s_atb.obj

Turbo Link Version 5.0 Copyright {(c) 1992 Borland International
C:\tasm\s_ath

1234

3.16.3 Routine to Read Hexadecimal Data

We know that hexadecimal numbers range from 0 to 9 and from A to F. The keyboard
gives ASCIl codes for these hexadecimal numbers. It gives 30H to 39H for numbers 0 to 9
and gives 41H to 46H for A to F letters or gives 61H to 66H for a to f letters. Hence, to
convert ASCII input from keyboard to corresponding hexadecimal number we have to first
check whether it is a number or letter and then if letter whether it is a small letter or
capital letter and accordingly convert it into hexadecimal number.

Copyrighted material

Microprocessors and Interfacing 3-86 8086 Instruction Set and ALP

BX
- N -
BH BL
15 1211 &7 43 0 p
ojlolo]o L
Sub J0H
| [AF Key
+ S
a H | AL \ 1500371 In‘ipul
a-f
OjojJoOlH | [Bub 57H
¢
Shiftleftdbits | 0 | 0 | H | 0 |=——0 LU
Sub 30H
] AF
+ ——
L L R \ [Sawam nput
a-f
0JOJH]H | [Sub 57H
i
shiftieta-bts | 0 [H][H] 0 |=—0 L
Sub 30H
AF
¥ H .
0 AL E: Sub a7H vt
a-f
HIHIH | [Sub 57H
i
shiftleftabits [H [H] H | 0 |=—0 L
Sub 30H
AF Key
+ o |l v A .. A .
(Sub 37H nput
a-f
HIH|H|H | |5ub 571

Note : H rapresents any hexadecimal digit {0-F).
Algorithm
l. Save registers
2. Make result = 0

3. Get the ASCII code of character from keyboard and
& Subtract 30H from it if character is 0 -9

s Subtract 37H from it if character s A = F

= Subtract 57H from it if character a - f
4. Shift the result by 4-bits and add digit to pack binary digits.

5. Repeat steps 2 and 3 four imes to get 4-digit hex number.

6. Restore registers.

Microprocessors and Interfacing 3-87 8086 Instruction Set and ALP

Initialize iteration
cauniar

!]

Shiift recsuil 1o befl by four bits

Add digit i.e. keycode
inko resul

L

Decrement beration cound

Microprocessors and Interfacing 3-88 8086 Instruction Set and ALP

Routine : Reading hexadecimal data

Returns : Hex number in variable number
; Routine to read 4d-digit Hex number from the keyboard

E_HEX PROC HNEAR

PUSH CX ;i Save registers

PUSH BX

PUSH AX

PUSH 51

HO¥ CL, 04 ;i Load shift count

MOV SI, 04 ; Load iteration count

MOV BX, 0 ; Clear result
BACK: MOV AH, 0L i [Read a key

INT 21H ; with echo]

CALL CONV i convert to binary

SHL BX, CL i [pack four

ADD BL, AL i binary digits

DEC S5I & as le-bit

JHNZ BAC H number]

MOV HWUMBEE, BX : Save result at HUMBER

POP 51 ; Restore registcers

POP AX

PFOFP BX

FOP CX

RET

ENDP

i The procedure te convert contents of AL into hexadecimal
equivalent

CONV PROC NEAR

CHMP AL, 9°
JEBE SUBTRAZD i TE number is between 0 through 9
CMP AL,"a’
JB SUBTRA3T ; If letter is uppercase
SUB AL, S57H ; Subtract 57H if letter is lowercase
JME LAST1
SUBTRA30: SUB AL, - 30H i Convert number
JHMEP LASTL
SUBTRA3T7: SUB AL, 37H i Convert uppercase letter
LASTL: RET
CONV ENDP

Sample Program
{ Sample example to read 4-digit Hex number frem the keyboard

JHMODEL SMALL i Select small model
LSTACE 140 s Imitialise stack

Microprocessors and Interfacing 3-89 8086 Instruction Set and ALP
M
.DATA ' Start data segment
pefine NUMBER
Start code segment
[Initialize

data segment]
Bead 4-digit hex number
[Exit to

Dos|

NUMBER DW?
.CODE
START:MOV AX, @DATA
MOV DS, AX
CALL R_HEX
MOV AH, 4CH
INT 21H

L mg SRy N N4 s "= R

L = -

Copyrighted material

Microprocessors and Interfacing 3-90 8086 Instruction Set and ALP

C:itasm\tasm s_rdhex.asm
Turbo Assembler Version 3.0 Copyright () 19BE, 1951 Borland
International

Assembling file: 5 rdhex.asm
Error messages: Hone
Warning messages: WNone
Pazszses: 1
Femaining memory: 410k

C:h\tasmitlink s_rdhex.obj
Turbo Link WVersion 5.0 Copyright {c) 1992 Borland International
C:\tasm\s rdhex

12AB

3.16.4 Routine to Display Hexadecimal Data

To display hexadecimal data we have to first unpack each digit (nibble) in the given
number. Then by adding 30H to digit having number between 0 to 9 and by adding 37H
to digit having letter between A o F we can get the ASCIl equivalent of given
hexadecimal number. This can be achieved by rotating number left (nibble by nibble) and
adding 30H or 37H into it. By rotating left we can display left most digit (MSD) first.

16 bit
A
45 12 11 8 7 43 gl)
¥ Dusplay
-— - —-|— * |30Hor37H| ——> Digit1 (MSD)

—V - = -I— I + |30Hor3TH| ——» Digit2
[
f

= = |+ [sonoram| => oiits

| + [30Hor 37TH| ——> Digit4 (LSD)

Microprocessors and Interfacing 3-N 8086 Instruction Set and ALP

Algorithm
1. Save registers.
2. Get the number and unpack digit from it.
3. Add 30H if digit is 0 = 9 or add 37H if digit is A - F to get the ASCII code of
digit.
4. Display digit.
5. Repeat steps 2, 3 and 4.
6. Restore registers.

Flowchart

Start

Save registers

Gat the number

?
Initialize digit count
Il-i

Unpack nibble

15 digit

Microprocessors and Interfacing 3.92 8086 Instruction Set and ALP

Routine
; Routine to display 4-digit hex number in AX

D_HEX PROC NEAR

PUSH DX ; Save registers
PUSH CX
PUSH AX
MOV CL, 0O4H
MOV CH, 04H

Load rotate count
Load digit count

BACK: BOL AX, CL ; Rotate digits
PUSH AX : Sawve contents of AX
AND AL; OFH i [Convert
CHMF AL,9 : number
JBE ADD30D : to
ADD AL, 37H ; its
JHMP DISE fOASCII
ADD30:
ADD AL, 30H ; eguivalent]
DISE: MOV AH, D2H
MOV DL AL i [Display the
INT Z2IH ¥ numbser]
FOF AX ; BRestore contents of AX
DEC CH i Decrement digit count
JHZ BACE ¢ If not zero repeat
POP AX { Bestore registers
FOP CX
POP DX
EET
ENDE
Sample Program

;i Sample program displays 4-digit hex number in AX

MODEL SMALL

LSTACKE 100

.CODE
MOV AX, 12ABH ; Load AX with test data
CALL D _HEX i Call procedure
MOV AH, 4CH : [Exit

INT Z1H H to DDS]

C:\tasm\tasm s _d_hex.asm
Turbo Assembler Version 3.0 Copyright (c) 1988, 1991 Borland
International

Assembling file: s d_hex.asm
Error messages: None
Warning messages: Hone
Passes: 1
Remaining memory: 410k

C:\tasm\tlink s d hex.obj

Turbo Link Version 5.0 Copyright (c} 1992 Borland International
C:\tasm\s_d hex

12AB

3.16.5 Lookup Tables for Data Conversions

For certain data when number of possible data conversions are small in
numbers then lookup tables are often used to convert data from one form to another. For
example, for conversion of BCD to 7-segment code there are only 10 possible conversions.
A lookup table is nothing but a array form in the memory as a list of data that is
referenced by a procedure to perform conversions.

Copyrighted material

Microprocessors and Interfacing 3-94 8086 Instruction Set and ALP

Converting from BCD to 7-segment code

Let us see how to perform BCD to 7-segment code conversion. For BCD to 7-segment
code conversion a lookup table contains the 7-segment codes for the numbers 0 to 9. These
codes are determined from Fig. 3.25. The 7-segment display shown in Fig. 3.25 uses active
high (logic 1} input to light a segment. The code is formed by placing the a segment in the
bit position 0 and the g segment in the bit position 6. [t position 7 is kept 0.

Fig. 3.25 T-segment code formation

A look-up table can be stored in the program memory (code segment) or in the data
memory (data segment). Let us see the program which uses lookup table stored in the
data memory to convert BCTDY eode inbo its ?ﬂgment l!'qui\"allﬂ'tt code.

Program statement : Wrile an assembly language program to convert BCD to 7-segment
code.

Program
.MODEL SMALL
- DATA
TAELE DB 3FH
OB O6H
DB S5BH
DB 4FH
DB 66H
DB &DH
DB TDH
DB O7H
DB TFH
DE &FH
.CODE
START: MOV AX, @DATA
MOV DS, AX
MOV AL, O0BH

SE S Sqa e

WO =g R B R D

S Wa %n 2 Ne %

[Initialize

Data segment]

Loads AL with any BCD digit,

for example 8, to be converted to
T-segment code

Load BX with the offset of
starting address of lookup table

MOV BX,0FFSET TABLE

Wy M Ws W WG ms ma

Microprocessors and Interfacing 3-95 8086 Instruction Set and ALP

XLAT TAELE ; Copy byte from address pointed by
: |BX + AL] back into AL

MOV AH, 4CH ; [Exit

INT Z21H H to DOS)

END START

EHND

Note : When look-up table is stored in the code segment we have to include a segment
override prefix in the XLAT instruction because XLAT instruction by default access, byte
from data segment. To access byte from code segment we have modify XLAT instruction
as XLAT C5 : TABLE.

Look-up table to access ASCI data

Many program require that numeric codes to be converted to ASCII character strings.
For example, if we need to display month in the text format we should use lookup table to
reference the ASCII coded months of the year. Let us see program to access ASCII string
corresponding to given month of the year using look-up table stored in the data segment.

Program statement : Write an assembly language program to access ASCI string
corresponding to given month of the year.

Program:

MODEL SMALL

~DATA

DPOINTER DW JAMN, FEB, MAR, APR, MAY, JUM, JUL, AUG, SEP,

DW OCT, HOV, DIC

JAN DB YJANUARY 5°
FEB LB ‘FEBRUARY &°*
HMAR DB "MARCH 5°
APR DB ‘APRIL 37
MAY DB MAY '
JUN DB “JUNE 5°
JUL DB "JULY 57
AlUG DB "RUOGUST &°
SEF DB ‘*SEFTEMEER 5"
OCT DB "OCTOBER 57
HOV DB "NOVEMBER 5°
DIC DB ‘DECEMBER &'

. CODE

START : MOV AX,@ DATA i [Initialize

MOV DS, AX ; Data segment]
MOV AL, O07H 7 Loads AL with any month in its

numerical wvalue
MOV S5I, OFFSET DPOINTER ; RAddress table find month of year
MOV AH, 00H ;i [Multiply the AL by 2
ADD AX, BAX & to point to correct
ADD 5I, AX ; month of the year]
MOV DX, [S5I] i Get month of vear

MOV AH, O09H [Display month

Microprocessors and Interfacing 3-96 8086 Instruction Set and ALP

INT 21H ;i of year string]
MOV AH, 4CH i [Exit

INT 21H H to DDS]

END START

END

3.17 Procedures

Whenever we need to use a group of instructions several times throughout a program
there are two ways we can avoid having to write the group of instructions each time we
want to use them. One way is to write the group of instructions as a separate procedure.
We can then just CALL the procedure whenever we need to execute that group of
instructions. For calling the procedure we have to store the return address onto the stack.
This process takes some time. If the group of instructions is big enough then this overhead
time is negligible with respect to execution time. But if the group of instructions is too
short, the overhead time and execution time are comparable. In such cases, it is not
desirable to write procedures. For these cases, we can use macros. Macro is also a group of
instructions. Each time we "CALL" a macro in our program, the assembler will insert the
defined group of instructions in place of the “CALL”. An important point here is that the
assembler generates machine codes for the group of instructions each time macro is called.
S0 there is not overhead time involved in calling and returning from a procedure. The
disadvantage of macro is that it generates inline code each time when the macro is called
which takes more memory. In this section we discuss the procedures.

From the above discussions, we know that the procedure is a group of instructions
stored as a separate program in the memory and it is called from the main program
whenever required. The type of procedure depends on where the procedure is stored in
the memory. If it is in the same code segment where the main program is stored then it is.
called near procedure otherwise it is referred to as far procedure. For near procedure
CALL instruction pushes only the IP register contents on the stack, since C5 register
contents remains unchanged for main program and procedure. But for far procedures
CALL instruction pushes both 1P and CS on the stack. Let us see the detail description and
examples of CALL instruction to enter the procedure and RET instruction to return from
the procedure.

CALL Instruction :

The CALL instruction is used to transfer execution to a subprogram or procedure.
There are two basic types of CALLs, near and far. A near CALL is a call to a procedure
which is in the same code segment as the CALL instruction. When the 8086 executes a
near CALL instruction it decrements the stack pointer by two and copies the offset of the
next instruction after the CALL on the stack. It loads [P with the offset of the first
instruction of the procedure in same segment.

A far CALL is a call to a procedure which is in a different segment from that which
contains the CALL instruction. When the 8086 executes a far CALL it decrements the stack

Microprocessors and Interfacing 3-97 8086 Instruction Set and ALP

pointer by two and copies the contents of the CS register to the stack. It then decrements
the stack pointer by two again and copies the offset of the instruction after the CALL to
the stack. Finally, it loads C5 with the segment base of the segment which contains the
procedure and IF with the offset of the first instruction of the procedure in that segment.

Examples :

Direct within segment (near)

CALL PRO ; PRO is the name of the procedure.
: The assembler determines displacement of pro
; from the instruction after the CALL and codes
; this displacement in as part of the instruction.

Indirect within-segment (near)

CALL CX » CX contains, the offset of the first instruction
; of the procedure. Replaces contents of IF with
; contents of register CX.

Indirect to another segment (far)

CALL DWORD PTR [BX] ; New values for CS and IP are fetched from four
; memory locations in D5, The new value for C5
; is fetched from [BX] and [BX + 1], the new IP
; is fetched from [BX 4+ 2] and |BX + 3].

RET Instruction :

The RET instruction will return execution from a procedure to the next instruction
after the CALL instruction in the calling program. If the procedure is a near procedure (in
the same code segment as the CALL inshruction), then the return will be done by replacing
the instruction pointer with a word from the top of the stack.

If the procedure is a far procedure (in a different code segment from the CALL
instruction which calls it), then the instruction pointer will be replaced by the word at the
top of the stack. The stack pointer will then be incremented by two. The code segment
register is then replaced with a word from the new top of the stack. After the code
segment word is popped off the stack, the stack pointer is again incremented by two.
These words/word are the offset of the next instruction after the CALL. So B0B6 will fetch
the next instruction after the CALL.

A RET instruction can be followed by a number, for example, RET 4. In this case the
stack pointer will be incremented by an additional four addresses after the [P or the IP
and C5 are popped off the stack. This form is used to increment the stack pointer up over
parameters passed to the procedure on the stack.

Flags : The RET instruction affects no flags.

Microprocessors and Interfacing 3-98 8086 Instruction Set and ALP

3.17.1 Reentrant Procedure

In some situations it may happen that procedurel is called from main program,
procedure? is called from procedurel and procedurel is again called from procedurel. In
this situation program execution flow reenters in the procedurel. This type of procedures

are called reentrant procedures. The flow of program execution for reentrant procedure is
shown in Fig. 3.26.

PROCEDLURE 2
MAINLINE PROCEDURE 1

CALL
PROCEDURE ¥

CaLL
PROCEDURE 1

CALL
PROCEDURE 2

HEXT MAINLINE
INSTRUCTION
AFTER CALL

RETURM P

RETLHRN TO
BAIN PROGRAM

Fig. 3.26 Flow of program execution for reentrant procedure

3.17.2 Recursive Procedure

A recursive procedure is a procedure which calls itself. Recursive procedures are used
to work with complex data structures called trees. If the procedures is called with N
(recursion depth) = 3. Then the n is decremented by one after each procedure CALL and

the procedure is called until n = 0. Fig. 3.27 shows the flow diagram and pseudo-code for
recursive procedure.

PROCEDURE PROCEDURE PROCEDURE

MAINLINE RECURSNE RECURSNE RECURSINVE
CALL
RECURIINE CALL CALL CALL
HEXT MUIMLIME
INSTRUCTION
1
PROCEDURE RECURSIVE RET RET RET

IF Bl

DECREMENT M
CALL RECURSIVE

ELSE
RETURM

Fig. 3.27 Flow diagram and pseudo-code for recursive procedure

Microprocessors and Interfacing 3-99 8086 Instruction Set and ALP
3.18 Macro

Macro is a group of instructions. The macro assembler generates the code in the
program each time where the macro is “called’. Macros can be defined by MACRO and
ENDM assembler directives. Creating macro is very similar to creating a new opcode that
can be used in the program, as shown below.

Example : Macro definition for initialization of segment registers,

INIT MACRO ; Define macro
MOV AN, @data H

MOV DS H Body of macro definition
MOV ES, AX H
ENDM H End macro

It is important to note that macro sequences execute faster than procedures because
there are no CALL and RET instructions to execute. The assembler places the macro

instructions in the program each time when it is invoked. This procedure is known as
Macro expansion.

'Cmnparisun of Procedure and Macro

Sr. No. Procedurs Macro
1. Accessad by CALL and RET instruchon Accassed during assembidy with name
during program_execution. given to macro when defined.
2 Machine code for insiructions is put onky Machine code is generated for instructions
once in the memory, each time when macro is called.

With procedures less memeory is required With macros more memory IS required,

4, Parameters can be passed in registers, Parameters passed as part of statement
memaory locations, or stack, which calls macrg,

Table 3.8

Passing Parameters in Macro
In Macro, parameters are passed as a part of statement which calls Macro.

Example :

FPROMPT MACRO MESSAGE :;Define macro with MESSAGE as a paramster
MOV AH, 09H
LEA MESSAGE

INT Z1H
ENDM +sEnd macrco
DATHE
HMES1 D 10, 13, '"Student HMName = S°'
MES2 DE 10, 13, '"Student Address : 5°
L CODE
START: MOV AX, Bdata ;[Imitialize

MOV D5, AX H data segment]

Microprocessors and Interfacing 3-100 8086 Instruction Set and ALP

FROMPT MES1 ; Display MES]1
FROMPT MESZ ; Display MESZ
MOV AH, 4CH : Beturn to DOS
INT Z1H

END START

The above example shows that parameters can be passed in macro with the help of
dummy argument. Argument tells the assembler to match its name with any occurrence of
the same name in the macro body. For example the dummy argument MESSAGE also
eCcurs in tI':e LEA instruction. The macre instruction "PROMPT MES1" passes the MES] as
a parameter and macro accepls that as an argument.

Local Variables in a Macro

Body of the Macro can use local variables. A local variable defined in the Macro is
available in the Macro, however it is not available outside the Macro. To define a local
variable, LOCAL directive is used. Example shows how local variable is used as a jump
address. If this jump address 15 not defined as a local, the assembler give an error message
on the second and subsequent attempts to use the Macro.

Example
DISPLAY MACRO A ;7 Displays ASCII character in uppercase
LOCAL J LABEL:; Defines J LABEL as local
PUSH DX
CMEF AL,"'2"
JBE J LABEL : Check i1if uppercase

SUB AL, 20H i Convert to uppercase
J LABEL: MOV DL, AL
B MOV AM, 02H
INT 21H
POF DX
ENDM
The above Macro accepls ASCI eode for character. (A-Z or a-z). If it is for lowercase
character, Macro converts it o uppercase character and displays the uppercase character
on video screen.
It is important o note that local variable or variables must be defined using LOCAL

directive immediately after MACRO directive.

3.19 Instruction Formats

The instructions of 5036 vary from 1 to & bytes in length. Fig. 3.28 shows the
instruction formats for | o 6 bytes instruction for each instruction format first field is the
operation code field, commonly known as opcode field. Opcode field indicates the type of
operation to be performed by the processor. The other field in the instruction format is
operand field. The operand field may consists of source/destination operand, source
operand address, destination operand address or next instruction address. The operand
and the relative address of the operand (displacement) may be either 8-bit or 16-bit long
depend on the instruction and its addressing mode.

Microprocessors and Interfacing 3-101 8086 Instruction Set and ALP

One byte instruction -im plied operands

One byte instruction register mode

| Opcode | Reg |

Registerto register

|_Opcote | | 11 [Reg|RM|

Registerioffrom memory with ao displacement

| Oscode | |mod[Reg|rm]

Registerto/from memory with displacement (£-hit)

[Oposde | [ModReg]Rm] [Dise]

Repgistertoffrom memory with displacement { 16-bit)

[Opcote | [ModlReg[rma] [Loworderdisp] [High-order disp]

immediate operand to register { B-bit }

| Opcode | [11jopecdefra] | Operand |

Immediate operand to register { 16-hit }

|_Opcode | [t1jOpcodelmm] [Lowoedsrcperand] [Hghorder cperand]

Immedia.e operand (o memory with 16-bit displacement

[_Ogsede | [mos[Opcode [rm] [Low-order Dise] [High-arder Disp] [Low-order cperand [righvceder aparand
Fig. 3.28 Sample 8086 instruction formats
The opcode and the addressing mode is specified using first two bytes of an
instruction. The opcode/addressing mode byte(s).
The opcode/addressing mode byte(s) may be followed by :
* No additional byte
*» Two byte EA (For direct addressing only).
= One or two byte displacement
#* One or two byte immediate operand
* Ome or two byte displacement followed by a one or two byte immediate operand

Microprocessors and Interfacing 3 -102 8086 Instruction Set and ALP

Two byte displacement and a two byte segment address {for direct intersegment
addressing only).

Most of the opeodes in B086 has a special 1-bit indicators. They are :

W-bit :

S-bit :

Some instructions of 8086 can operate on byte or a word. The W-bit in the
opcode of such instruction specify whether instruction is a byte instruction
(W = () or a word instruction (W = 1).

The D-bit in the opcode of the instruction indicates that the register specified
within the instruction is a source register (D = 0) or destination register (D =1).

An B-bit 2's complement number can be extended to a 16-bit 2's complement
number by making all of the bis in the higher-order byte equal the most
significant bit in the low order byte. This is known as sign extension. The 5-bit
along with the W-bit indicate :

W Operation

il 8-bit oparation

= | | A

1 16-bit operation with 18-bit immediate oparand

-l

i -

1 16-bit operation with a sign exlended 8-bil immediate operand

V-bit :

Z-bit :

Table 3.9

V-bit decides the number of shifts for rotate and shift instructions. If V = 0, then
count = 1; if V = 1, the count is in CL register. For example, ifV=1and CL =2
then shift or rotate instruction shifts or rotates 2-bits.

It is used for string primitives such as REP for comparison with ZF Flag. If it is
I, the instruction with REP prefix is executed until the zero flag matches the
Z-bit.

(Refer Appendix A for instruction formats)

As seen from the Fig. 328 if an instruction has two opcode/addressing mode bytes,
then the second byte is of one of the following two forms :

0T

| MOD Opcode RM

| MOD Reg RIM

Microprocessors and Interfacing 3-103 8086 Instruction Set and ALP

where Mod, Reg and R/M fields specify operand as described in the following tables.

Mode Displacement
0 0 Disp = 0 Low order and High order displacemeani ane absent
0 1 Onky Low order displacement is present with sign extended to 16-bils
1 0 Both Low-order and High-order displacements ane present.
1 1 rim fiald is freated as & 'Reg” field.

Table 3.10 ‘Mod’ field assignments

Word Operand (W = 1) Byte Operand (W = 0) Segment
000 AX ooo AL 00 ES
oo CX oo CL oA LS
o010 DX 010 DL 10 58
011 BX 011 BL 11 D3
100 &P 100 AH
101 BP 101 CH
1190 sl 110 OH
111]} 111 BH

Table 3.11 ‘Reg’ field assignment

R Operand Address "
000 EA = [BX] + [51] + Displacement (optional)

001 EA = [BX] + [DI] + Displacement (optional)

010 EA = [BP] + (SI) + Displacement (opticnal)

011 EA = [BP] + [DI] + Displacement (optional)

100 EA = [SI] + Displacement (optional)

101 EA = [M] + Displacement (optional)

110 EA = [BP] + Displacemeant (optional)

111 EA = [BX] + Displacemant (optional)

Table 3.12 ‘R/M’' field assignment

Microprocessors and Interfacing 3-104 8086 Instruction Set and ALP

nmp Example 4 @ Wrile the instruction format for PUSH BX instruction.

Solution : This instruction will put BX register

contents on stack. Referring the table in Byte | I
Appendix A we find that the 5-bit opeode for op1jof1{ojof1i1

this instruction is 01010, We put 011 in the

REG field to represent the BX register. The Opoode for REG=BX
codes for each registers are shown in table

3.11. The resultant code for PUSH BX will be Fig 329 Instruction format
01010011,

P Example 5 : Write the instruction format for MOV AX, CX instruction.

Solution : This instruction will copy a word from the CX register to the AX register.
Referring the table in Appendix A we find the 6-bit opcode for this instruction is 100010.
Because we are moving a word, W=1. The D bit for this instruction may be somewhat
confusing . Since two registers are involved, we can think of the move as either to AX or
from CX. It actually does not matter which we assume as long as we are consistent in
coding the rest of the instruction. If we think of the instruction as moving a word to AX,
then make D=1 and put 000 in the REG field to represent the AX register. The MOD field
will be 11 to represent register addressing mode. We make the R/M field 001 to represent
the other register CX. The resultant code for the instruction MOV AX, CX will be 10001011
11000001, The Fig 3.30 shows the meaning of all these bits.

| Byt 1 | Byte 2 F
Tjo|ofolijafifrlr|1jojalo|afo]
Opeode for MOV i I_H’M "X

BN word ——— e RBiSiar 10 regisher

Fig. 3.30 Instruction format for MOV AX, CX

It we change D field to a 00 and swap the codes in the REG and R/M field, we will get
10001001 11001000, which is another equally valid code for the instruction,

Microprocessors and Interfacing 3-105 8086 Instruction Set and ALP

| Byte 1 Byte 2 |
1joj0jof1jojo|1|1(t1|ojoj1|(0ja|0
~ — - e —
U'pmdelﬂ-ruil R = AX
From REG REG = CX
MOV word

— Ragister to regisier
Fig. 3.31 Alternative instruction format for MOV AX, CS
mp Example 6 : Write the instruction format for MOV 56H[51], BH

Solution : This instruction will copy a byte from the BH register to a memory location.
The BIU will compute the effective address of the memory location by adding the
indicated displacement of 56H to the contents of Sl register. The BIU then produce the
physical address by adding the effective address with the base represented by 16-bit
contents of DS register. The 6-bit opcode for this instruction is again 100010, We put 111 in
the REG field to represent the BH register. D = 0 because we are moving data from BH
register. W = 0 because we are moving a byte. The R/M field will be 100 because 5l
contains part of the effective address. The MOD field will be 01 because the displacement
contained in the instruction, 56H, will fit in 1 byte. The B-bit displacement forms the third
byte of the instruction. The resultant sequence of code bytes will be 10001000 01111100

(1010110,

i Byte 1 | Byte 2 | Byte 3

ﬂl}l]1l'.'ll'!{l11l}E

i1ﬂﬂ|]|1tlt‘.'l:'.ll}'ll11

- —— - eyt — -
Opcode for MOV I i ’{ RiM = [S1] Displacement = 56 H
From REG REG = BH
MOV Byte Momaory, one byte displacemeant

Fig. 3.32 Instruction format for MOV 56H [3S1], BH

immp Example 7 : Write the instruction format for MOV DL, [BX].

Solution : This instructon will copy a byte to DL from the memory locaion whose
effective address is contained in BX. The effective address will be added to the data
segment base in DS to produce the physical address. Referring the table in Appendix A,

Microprocessors and Interfacing 3 - 106 B086 Instruction Set and ALP

we find opcode for this instruction 1s 100010, We make D = 1 because data is being moved
tor register DL. We make W = 0 because the instruction is moving a byte into DL. We put
010 in REG field to represent DL register. We make MOD field 00 to represent memory
with no displacement. For this instruction R/M field will be 111. The resultant sequence of
code bytes will be 1000101000010111.

| Byte 1 | Byte 2 |
1jololoj1|ol1|ofofojoj1jo}1]1]1
L. — - g P it
ﬂpmdurnmcwl R/M = [BX]

To REG REG = DL

MoV
Byte Memory, no displacemant
Fig. 3.33 Instruction format for MOV DL, [BX]

nmp Example 8 : Write the instruction format for MOV BX, [1234 H]

Solution : This instruction copies the contents of two memory locations into the BX
register. The direct address or displacement of the first memory location from the start of
the data segment is 1234H. The BIU will produce the physical memory address by adding
this displacement to the data segment base represented by the 16-bit number in the DS
register.

The 6-bit opcode for this instruction is again 100010. We make D = 1 because we are
moving data to the BX register, and we make W = 1 because the data being moved is a
word. We put 011 in the REG field to represent the BX register. Referring tables 3.11 and
3.12 we get MOD = 00 and R/M field = 110. Then the first two bytes of instruction code
will be 10001011 00011110, These two bytes will be followed by the low byte of the direct
address, 34H (0011 0100 binary), and the high byte of the direct address, 12H (0001 0010
binary). The instruction will be coded into four successive memory addresses as 8BH, 1EH,
3MH and 12H.

| Byte 1 | Byte 2 | Byle 3 | Byte 4 |
tlojajaf1jol1jtfajoloftprprj{ojojajifs|ap1{ajolajojol1)ojajrjao
. _—

h"'_-""v"'_-_"' T, e
Opcode for MOY FREG = BX Direct address Direct address

To REG - lower byte Higher byte

| irec
MOV wand addressing

Fig. 3.34 Instruction format for MOV BX, [1234H]

Microprocessors and Interfacing 3-107 8086 Instruction Set and ALP

g Example 9 : Write the instruction format for MOV CS : [BX], CL.

Solution : This instruction copies a byte from the CL register to a memory location. The
effective address for the memory location is contained in the BX register. Usually an
effective address in BX will be added to the data segment base in DS to produce the
physical memory address. In this instruction, the C5 in front of [BX] indicates that we
want the BIU to add the effective address to the code segment base in C5 to produce the
physical address. The C5 : is called segment override prefix.

When an instruction containing a segment override prefix is coded, an 8-bit code for
the segment override prefix is put in memory before the code for the instruction. The code
byte for the segment override prefix has the format 001 XX 110. We can be replace XX
with : the segment code. The segment codes are : ES = 00, CS = 01, 55 =10 and DS = 11.
The segment override prefix byte for CS, then, is 00101110,

The opcode tor this instruction is 100010. D = 0 because we are moving data from the
CL register. W = 0 because we are moving a byte. We put 001 in REG field to represent
CL register. We make MOD feld 00 to represent memory with no displacement. For this
instruction R/M field will be 111. The resultant sequence of code bytes will be 00101110
10001000 00001111.

| Byte 1 | Byte 2 | Byte 3 |
Olof1jof1(1f1jaf1|{o(0|{oj1jojO0|o|(o|jO|a|{oj1j1j1]1
""'-.r—'" L — i L ———
C3 Opeode for MOV ‘ RM = [BX]
Register
From REG REG = CL
MOV Byte

——— Memary, no displacemant
Fig. 3.35 Instruction format for MOV CS : [BX], CL

Review Questions

Explain various dota addressing modes of 8086 with the help of examples,

Explain the difference between direct and indirect addressing mode.,

Explain bose-plus-index nddressing meode.

Explain how base-plus-index addressing mode con be wsed to locate array data.

Explnin register relating addressing.

Explain base relative-plus-index addressing.

Explain how base relative-plus-index addressing can be wsed to locate data from two dimensional

["

M OE ok W

arny.

e

Explain the siring addressing mode.
8, Explain various O addressing modes supported by 8086,

Microprece=zors and Interfacing 3-108 8086 Instruction Set and ALP

]
11,
13
1L
I

i,
I
[
1,

24,

26
27

24

FEapievs dineet program memory addressing with the help of example.

Winee -~ 2, swear and far jfumps ?

Fapis Hee differonce bebivven mbersegment and intrascgmient fump instrictions,
Fauploe sty program mcmory addressing.

Fapie o anfmect program memory addressing.

5% (T T W

Wt 2 lee frenetion of shick pednter ?

Wit o mn onent By fop of stack 7

Fuplaoe dne psefulness of e folloseing instructions in 8086

a JOUK b TEST ¢ XLAT d. LES

Weite b teweance befioeen the folloting insbructions

AT OX 437AH amd MOV CX, [437AH]

oAl BLL J3TAH amd MOV BL, DS:BYTE PTR [437AH]

Cred o ey il instrickions for microprocessor BO86 7

i Ay OX, Al b MOV DS, 437AH

co MOV O TEXD d. MOV 43H[SI, DH

. MOV CsidBX1L DL

Wiel 1 heli of ane exameple describe the action performed by microprocessor 8086 for
vttt ol froaeeey imsbruchons

. AAM b CMPSB ¢ IMUL 4. ROL

Exploe M wise of Hhe following prefixes

a. BKFY o REPE

Dlescris B responese of BO86 to the follenving fioe primitive string operations.
MOVS. CMPS, SCAS, LODS and 5TOS

Discess all fypwes of jump instructions wsed in 8086 microprocessor.

Wril v apwras s perforiered by the 8086 microprocessor CALL instruction.
Expley: dn oletadl the difference betreen mear CALL and far CALL

For the tullozring instruction compute the address of memory operand for 8086 :
a. MOV AN, (BX] b MOV AL, (BP + 5]

Assiiiie

CS =/MioH DS = M2H 55 = (400H ES = (N30H

B = elOH DX = O20H ST = 0030H SP = 0030H

Clearly show congpuetations.

Dreecrin e difference betiwen @ fumip and @ call tnstruction ? What does the processor do in
exveciluny i 7 You may use 8085, 8086 instructions fo explain.

Explfrr it aperation is performed by the following instructions :

a. SHI. #YTE PTR (0400 H), CL

o MOV BXT DI + 4, AX

£ XAl if. XTHL ¢ PCHL

Microprocessors and Interfacing 3-109 BOB6 Instruction Set and ALP

3.
al.

3

Explain the use of PUSH and POP instructions i 8086

Explain the function of the following instructions of 8086 :

XLAT, CWD and CMPSB.

Wihat is the function of assembler directives ?

Explain the following assembler directives

i. DB b EXTEN ¢ MODEL SMALL d. PROC e PUBLIC
Explain variables, suffix and operators used in assembly langiage programming
What do you mean by machine language program 7

What do you meean by assembly language program 7

. Give the difference betwerm machine nguage and assembly language.

Explain the assembly language programming ps,
What do you mrean by optimum solution ?

Explaiw e zteps Mt assembler followes o convert .ASM file to (OB] fie,

. Explain the function of linker.

Whatt is detugger ? Explain its adoantages.

Explain varions debugger commands,

Wit is time delay 7 Write an assembly language program lo gencrate a delay of 500 s,
Explain the fvo techmigques o cormoert binary to ASCIL

Explain the process of converting ASCI to bimary,

. Explain the process of displaying hexadecimal data.

Explain hotw look wup tables can be used to convert BCD to Z-segment cody,
What is macro 7 When it should be used 7 Wihat are ils adoantages 7
Explain the stricture of macro with the help of exiomple.

. Give Hy comparizson bebween procedire and macra,

Homr are porameters passed fo a macra 7

A

(3 - 110)

Assembly Language Programs
—

In this chapter, we see the programs involving logical, branch and call instructions,
sorting, evaluation of arithmetic expressions and string manipulation. Most of the
programs use D05 function calls. The details of DOS function calls are given in chapter 9.

Program 1 : Read keyboard input and display it on monitor

TITLE Ee#ad HKeyboard Input and Display it on Monitor
.model small

.code
STATE: moy ax, Bdata ; |[loads the address of data
mov ds,ax § segment in DS]
back: mow ah,d1
int 2Z1h
cmp al,'0"
jz Last
imp back
Last: mov ah, 4ch r | Exit
int Z21h : to DOE]
end start
end

Program 2 : Addition of two 32-bit numbers

; Thiz program adds two numbers
TITLE Addition of two 32-bit numbers
model small

.data
nol dd B8111FFFFh
nod dd 92224444h

result dd 7
CArrcy db 0

code
start: movw ax, @data ! [loads the address of data
mov ds, ax i segment in DS]

mov ax;word ptr nol ; Get the LS word of first
y number in AX add ax,word
i ptr noZ Rdd the LS word of
;} second number to it

(4 - 1)

Microprocessors and Interfacing 4-2 Assembly Language Programs

mov word ptr result,ax; Save LS word of result
mov bx, offset[nol]
mov ax,word ptr [(bx+2]; Get the MS word of first
; number in AX
mov bx, offset[noll
adc ax,word ptr [bx+Z] i Add the M5 word of second
;i number to it with carry
mov bx, offset result
mov [bx+2],ax : Save M5 word of result
ade carey,d save any carry after
M5 word addition

mov ah, 4ch [Exit
int 21h to DOS]
end start

end

Program 3 : Addition of 3 « 3 matrix

§ This program adds 3 x 3 matrix. The matrices are stored in
i form of lists (row wise).

TITLE Addition of 3 x 3 Matrix

model small

.data
ml db 10k, 208, 30n, 40h, 50h, 80k, 70h, BOh, 90h
m2 db 10h,20h, 30h, 40h, 50h, 60h, 70k, B0h, 90h
result dw 9 dup{d)
. Code
atart: mov ax, Bdata i [loads the address of data
mov dE, ax ;I segment in DS)
mov cx, 9 ¢y Initialise the counter
mov di, offset ml i Imnitialise the pointer to
; matrixl
mov bx, offzset md i Initialise the pointer to
§ matrpixd
mow 5i; offset result ; Initialise the pointer to
i resultant matrix
back: mowv ah, 00 s Make MSB of result zero
mow al, [di] ; Get the number from matrixl
add al, [bx] ; Get the number from matrix?

and add it in corresponding
number of matrixl

Save the carry eof addition
in MSB

Store the result in
corresponding position of
resultant matrix

adc ah, 00

movw [si],ax

inc di ¢ increment pointer to matrixl
inc bx { increment pointer to matrix?
inc si i [increment pointer
inc s1i ;i to resultant matrix]
loop back ; Repeat the process for all

;/

matrix elements

4-3 Assembly Language Programs

Microprocessors and Interfacing

mow ah, 4ch s | Exit

int Z1h H Lo DOS]
end start
end
Flowchart

Start
Initialize Counbes

Initialize Pointer to Matrix 1

Initialize Pointer to katrix 2

Infialize Pointer fo resultant Matrix

Gl e murmiber from Matrix 1

Get the number from Matrix 2

Perform addition of tao numbers

Stone nesull in e resultant matrix

Incrameani poinfer to Matrix 1

Incrament poinder io Matrix 2

Increamant poinler to Resultant Matrix

Decramant Counter

Mo Countar

=0

Microprocessors and Interfacing 4-4 Assembly Language Programs

Program 4': Program to read a password and validate user

MODEL SHALL

.DATA

.STACK 100

FASS DB 'MBS1234°

MES1 DB 10,13, "ENTER 7 CHARACTER PASSWORD 5'
MESZ DB 10,13, "PASSWORD IS CORRECT §°

MES3 DB 10,13, "INVALID PASSWORDS®

. CODE
START: MOV AX, BDATE ;| Imitialise
MOV DS, AX i data segment]
MOV AH, 09H
LEA DX,MES1
INT 21H ; Display message
MOV CL, 00 ; Clear count
MOV DH,; O0H i Clear number of match
¥OR DI,DI ; Intialise pointer
LHWHILE CL != 7 ; Check if count = 7 1if not
i Continue
MoV BH,OTH
INT 21H : Read character
PUSH AX ; Save character
MOV ARH, O2H i [Display
MOV DL, "+ ;"' instead of
INT 21H ; character |
FOP AX i Restore character
LEA BX, PASS ; | Set pointer
MOV RH, [BX+DI] ; to password |
. IF AL==hH ; Compare read character with
i password
ADD DH; 01 ! Increament match count 1f match
§ occurs
LENDIF
INC DI i Increment pointer
INC CL { Increment counter
- ENDW
IF DH == 7 i | if match count = 7
MoV AH, 09H ; display message
LEA DX,MESZ 7 password is correct]
INT 21H
.ELSE ! | 1if match count <> 7
MOV AH, 09H ; display message
LEA DX,HMES3 ; password is wrong]
INT Z21H
.ENDIF
MOV AH, 4CH ; | Emit to
INT Z21H ¢ DOs]
END START

END

Microprocessors and Interfacing 4-5 Assembly Language Programs

Program 5 : Program to calculate factorial of a number
(Softcopy of this program, P18.asm is available at www.vitubooks.com)

Flowchart :

Start

VT v

I Check for validity

Result =0

Call facto

Display factorial
of & given number

1
Stop

MODEL SHMALL
-STACK 1400
-OATH
MS1 DB 10,123, 'ENTER THE MNO.:5'
M52 DB 10,13, '"THE FACTORIAL IS : §°

NUM W 0
ANE DW D
.CODE
STRRT: MOV DX, @data i | Initialise
Mo D5, DX ; data segment |
ERROR: LEA D¥,M51
MOV AH, 09H ; Display message MS1
INT 21H
MOV ARH,O01lH i Inmput number with echo
INT 21H
CHMP AL, 30H ; If zero display 1
JE DISPLYZ2

CMP AL, 30H ¢ If < 30 then input

Microprocessors and Interfacing 4-6 Assembly Language Programs
JB ERROR ;i Next no
CHMP AL, 39H ; If >3% then input
Jh ERROR +r HNext no
sUB AL, 30H i Convert to HEX
MOV AH, O0H
SUB SP, 00044 ; Space in stack for
PUSH B¥ ;i Factorial
CALL FARCTO
ADD 5P, 0002 ; After execution
POP B i Of facto space for
POP D ; Result .
MOV BX, 0010 ; Convert HEX to BCD
MOV CE, 0008 ; Max input no is 9
BACE : DIV BX ; To get remainder
OR Cx, 0030H ; Convert to ASCII
PUSH DX
MOR D, DX ¢ Clear DX
Loop BACK
LEA DX, M52 i Qutput MS2
MOV AH,09
INT 21H
MOV CX, 0006
DISPELY1: POP DX
MO AH; D2H { Output factorial
INT 21H
LOOF DISPLY]
JHP LAST
DISPLYZ: HONF BH, 03
LEA DX, M52 i Display factorial of
INT 21H i Zero = 1
MOV AH, 02ZH
MOV DL, 31H
INT 21H
LAST: MOV AH,; 4CH i [Terminate and
INT 21H i Exit to DOS5]
FACTO FROC
FUSHF
FUSH AX
FUSH DX
FPUSH BF
MOV BPF, 5P { Point BP at TOS
Moy A¥, [BP + 10] ;! Copy no from stack to
CHP AX,0001H ; AX & if no not = 1 then
i GO_ON
JHE GO_ON ; To compute factorial
MOV WORD PTR[BP+12),0001H

-

Else load FFACT

WORD PTR [BPF+14],0000H ©

EXIT

0 and 1 in stack

Microprocessors and Interfacing ' 4-7 Assembly Language Programs
GO ON: SUB EP, D0D4H : Space for preliminary

DEC AX i Factorial

FUSH AX

CALL FACTO

Mo BP, 5F

MOV AX; [BP+2] ; Last (N - 1)! from

; stack to AX

MUL WORD FTR [BP+1l6] ; Multiply by previous H

Mo [BP+18], AX s Copy new facto to stack

MOV [BP+20],DX

ADD SP,0006H i Point 3F at pushed REGR
EXIT: POP BEP

FOF DX

FOP AX

POPF

RET
FACTO EHDP

END START

Program 6 : Reverse the words in string
(Softcopy of this program, P19.asm is available at www.vtubooks.com)

-MODEL SMALL
.STACK 100
- DATA
TITLE REVERSE THE
M1 Ce
M2 OB
BUOFF DB
DB
De
COUNTERL oW
COUNTERZ DW
.CODE
START: MOV
Mo
MoV
MOV
INT
MoV
LEA
INT
MOV
MOV
INT
LEA
INC
Mo
MOV
MOV

WORDS IN STRING

10,13, 'ENTER THE STRING:5'
10,13, 'THE REVERSE STRING :5°

BO
o
80 DUP{O)
0
0

AX,Bdata H
D3, AX i

AH, 09H i

DX, 0OFFSET Ml
21H
AH, ORH

DX, BUFF ;

21H
AH, 09H

DX, OFFSET M2 ;

21H
BX, BUFF
BX

CH, OOH :
CL,BUFF + 1 ;
DI,CX :

[Imitialise
data segment]
Display message M1.

I/F the string.

Display message M2

[Take character
count in
DI]

Microprocessors and Interfacing 4-8 Assembly Language Programs
BACK : MOV DL, [BX+DI] 7 Point to the end
7 character and read it

MOV AH, 02ZH

INT 21H i Display the character

DEC DI ; Decrement count

JHE BACK ; Repeat until count is0
EXIT: MOV AH; 4CH ; [Terminate

INT 21H } Exit to DOS]

END STRRT
Flowchart :

G

/ Gatmralri-ru /

!

St pointar to
End af the string

Count = String Langth

]
1

/Dlwlny painied :hm/

Pointer =Pointer -1

Count = Count -1

s
Count =0 7

Microprocessors and Interfacing

4-9 Aunmhlyll.rlnguign Programs

Program 7 : Search numbers, alphabets, special characters

(Sottcopy of this program, P20.asm is available at www.viubooks.com)

Flowchart :

Start

‘/ et tha string ‘,1"

Set number

Sal alphabat countar = 0

courier = 0

Sal special character counter = 0

Ciount = Length of the String

i

Characier |

Sel painter 1o firsl

n the string

Yas

L

| Incremant number counter

]

1
| Increment aiphabet counter |

1

|In:mnunt special character counier

Poinder = Pointar + 1

Counl = Counl - 1

D|-B'f numbear countar
alphabet counler
I:ﬁ!{ﬂﬂ}' special charactar munl:af

i

Stop

Microprocessors and Interfacing 4-10 Assembly Language Programs

.MODEL SMALL

.STACKE 100

TITLE TOTAL

i (THIS PROGRAM GIVES THE TOTAL NUMBERS, ALPHABETS, SPECIAL
i CHARRCTERS I[N THE GIVEN STRING)

.DATA
BUF DB 80 ;iMAM LENGTH OF AREAY)
CE Q0 ; (ACTUAL LENGTH OF ARRAY)
DB &80 pup (0} ; {STARTING OF ABRBAY)
STR1 DE 10,13, "ENTER THE STRING:S'
STRZ DE 10,13, "TOTAL HO:5'
STR3 DE 10,13, "TOTAL ALPHABETS:S'
STR4 DB 10,13, "TOTAL SPECIAL CHAR:5'
KM DE O '
SPC DE O
ALFHA DB 0
LCOLDE
START : MO Ak, HBdata : [Imitialise
MOV DS, AX i data segment]
MOV AH, 09H
MOV DX, 0FFSET STRI1 i Address of STE1
INT 21H ; Display message STRI1
MoV AH, 0AH
MOV DX, OFFSET BUF { Get address of the buffer
INT 21H { Input the string
MO BX,QFFSET BUF : Get address of the buffer
INC BX ; Increment address of buffer
MOV DL, [BX] i Get the length of string
IHC BX ¢ Get the starting of array
HEXT: MOV AL, [BX] i Read the character
CMP AL; 30H { Check for special character
JB IMCS5PC i If yes goto INCSPC
CHMF AL, 3AH ; Check for number
JB THCHNUM ¢ If number goto INCHUM
CHMP AL; 41H ¢ Check for special character
JB INCSPC i If yes goto INCSPC
CHP AL, 5BH 7 Check for alphabet
JB IHALP i If yes goto IHNALP
CMP AL;blH i Check for special character
JB INCSPC : If yes goto INCSPC
CHP AL, 7TBH 7 Check for alphabet
JB INALF i If yes goto IHALP
INCEPC: MOV AL, SPC
ADD AL,01H i [INCR special character
i counter and
DAA i adjust it to decimal]
MOV SPC, AL
INC BX ¢ Increment pointer to point

; the next character

Microprocessors and Interfacing 4-1

DEC DL ; Decrament counter

JHZ NEXT

JHE DISPLY i Otherwise goto DISFLY
THCHUM: MOV AL, UM

ADD AL,01H ; [Increment number counter

DAR i and adjust it to decimal |

MOV NUM, AL

INC BX i Increment pointer to polnt

;! the next character

DEC DL ;i Decrement counter

JHE HEXT i If count not = 0, repeat

JHP DISPLY ; Otherwise goto DISPLY
INALE: MO AL; ALPHA

EDD AL, O1H ! | Increment alphabet counter

DAA ; and adjust it to decimal |

MoV ALPHA, AL

INC BX { Increment pointer to point

: the next character

DEC DL { Decrement counter

JHZ NEXT ; If count not = 0, repeat

JHF DISFLY i Otherwise goto DISPLY
DISPLY: MOV DX, OFFSET STE2 { Get the address of STRZ

MOV AH,09H

IMT Z1H ; Display message STRZ

MOV AL, BUM ¢/ Read the number count

BKD AL, OFOH ; Get MS digit in AL rotate AL

Mo CL, 04H : Four times

ROR AL, CL

ADD Al, 30H i Convert to ASCII

MOV DL, AL

MOV AH, 02ZH i Display the M3 digit

INT 21H

MOY AL, NUM i Bead the number count

AND AL, OFH i Get LE digit in AL

ADD AL; 30H ¢ Convert to ASCIII

MOV DL, AL

INT 21H ; Display the LS digit

MOV DX, OFFSET STE2 { Get address of S5TR3

MO AH, 09%H

INT 21H ; Display message STR3

MoV AL, ALFHA { Read the alphabet count

AHD AL, OF0OH ; Get MS digit in AL rotate AL

MOV CL,04H ¢ Four times

ROR AL,CL

ADD AL, 30H { Convert to ASCII

MO DL, AL

MOov AH,02H

INT 21H ; Display the M5 digit

MON AL, ALPHA ; Read the alphabet count

AND AL, OFH i Get LS digit in AL

EEe——

—

Microprocessors and Interfacing 4-12 Assembly Language Programs
ADD AL, 30H ; Conwvert to ASCII
Mo DL, AL
MO AH, 02H
INT 21H ; Display the L5 digit
MOV DX, OFFSET 5TR4 ; Get the address of STR4
MOV AH, 09H
INT 21H i Display message STR4
MOV AL, SPC : Read the special character
; count
BHND AL, OFOH ¢ Get M5 digit in AL rotate AL
MoV CL,04 ; Four times
ROR AL, CL
ADD AL, 30H ;i Convert to ASCII
MOV DL, AL
MOV AH,02H
INT 21H j Display the ME digit
MOW AL, S5PC ; Read the special character count
AND AL, OFH ; Get L5 digit in AL
ADD AL, 30H ; Convert to ASCII
MOV DL, AL
MOV AH,02H
INT 21H i Display the LS digit
MOV AH; 4CH $ [Terminate and
INT 21H 4 Exit to DDS]
END START

Program 8 : Program to find whether string is palindrome or not
{Softcopy of this program, P21.asm is available at www.vtubooks.com)

.MODEL SMALL

. DATA
ML DE 10, 13, '"Enter the string : '
M2 DB 10, 13; '"String is palindrome 5'
M3 DB 10, 13, 'String is not palindrome 5°
BUFF DB 80

DB 0
DB 80 DUP (O}

. CODE

START: MOV AX,8data i [Initialise
MOV DS, AX i data segment]
MOV AH, 09H
MOV DX, OFFSET ML
INT 21H i Display message Ml
MOV AH, DAH ; Input the string
LEA DX,BUFF
INT 21H
LEA BX,BUFF+Z i Get starting address of string
MOV CH, O0H
MOV CL,BUFF+1

| MOV DI, CX

Hmuupuunalnﬁlnndhﬂlﬂiﬂng

4-13 Assembly Language Programs

DEC
SAR
MOV
MoV
MOV
CMP
JHNZ
DEC
INC
DEC
JHNE
MO
MOV
INT
JME
MO
MOV
INT
Mov
INT
END

BACK:

LAST:

TER:

DI

CL,1

AL, [BX + DI]
AH, [BX + S5I]
AL,RH

LAST

DI

SI

CL

SACK

AH, 09H

DX, OFFSET M2
Z1H

TER

AH,09H

DX, OFFSET M3
21H

AH, 4CH

21K

START

Wy Wy Ty Wy Wy Wy Wy Wa N

Get the right most character
Get the left most character
Check for palindrome

If not exit

Cecrement end pointer
Increment starting pointer
Decrement counter
If count not = 0;
Display message 2

repeat

Display message 3

[Terminate and
Exit to DOS]

Program 9 : Program to display string in lowercase
(Softcopy of this program, P22.asm is available at www.viubooks.com)

MODEL SMALL
+DATA
M1
M2
BUFF

.CODE
START

INT

pe 10,
DB 10,
DB 80
DB D
DB 80 DUPp

AX,Hdata

DS, AX

AH, 09H

DX, OFFSET M1l

21H

AH, O9H

DX,OFFSET M2
Z21H

AH, ORH

0¥, BUFF

21H

CH, O0H

(0]

"ENTER THE STRING : 35°'
"THE LOWERCASE STRING : '

[Initialise
data segment]
Display messagel

Display message M2

Input the string

Microprocessors and Interfacing

4-14 Assembly Language Programs

MOoN
LEA
MoV
BALE MoV
ADD
MOV
INT
INC
LEC
JNZ
MOV
INT
END

CL,BUFF+1
BX,BUFF+2
DI, 00H
DL, [BX+DI]
DL, 20H
AH, DZH
21H

DI

cX

BACK

AH, 4CH
21H

START

¢ Take character count in CX

7 polint to the first character
;7 convert to lowercase

; Display the character

; Decrement character counter
; If not = 0, repeat

¢ [Terminate and

F Exit to DDS]

Program 10: Write an 8086 assembly language program (ALP) to add
array of N number stored in the memory.

Flowchart :

G

L

Initialize counter
array painter and sum = 0

Gel aray element

Sum = sum + array elemant

Hmm-ﬂmm

4-15 Assembly Language Programs

Algorithm :
1. IniHalize counter = N
Initialize array pointer.

I B N I

9.

Sum of array having HEX numbers

Sum =0

Get the array element pointed by array pointer.

Addanjyehﬂmnthtﬂu!mum

Increment array pointer decrement counter.

Display sum
Stop.

PAGE
TITLE

.MODEL SMALL

- DATA

AERAY
sUM
MES

.CODE
START:

BALC:

DI
CL
BRC

52,80

- Repeat steps 4, 5 and 6 until counter equal to zero.

8086 ALP to find sum of numbers in the array.

AX,Bdata f
DS, AX H
CL, 10 ;
DI, DI H
BX, ARRAY !
AL, [BX+DI] H
AH, 0O0H J
SUM, AX H

AX, SUM i

CALL [HEX H

MOV RH,
INT 21H

4CH

'Sum of array elements is

DB 10H,20H,30H,40H,50H, 60H, TOH, 80H, 30H, O0H
oW O
DB 10,13,

5 P

[Imitialise

data segment]
Initialise counter
Initialise pointer
Initialize array base pointer
Get the number
Make higher byte 00h
50M = SUM + number
Increment pointer
Decrement counter
if net 0 ge te back
Get sum in AX
Display sum of array

Microprocessors and Interfacing 4-16 Assembly Language Programs
D_HEX PROC NEAR

FUSH DX ; S5ave registers

POSH CX

PUSH AY

MOV CL, O04H

Load rotate count

MUY CH, O04H ; Load digit count

BACE : ROL A¥X, CL r rotate l:ligits
PUSH BRX ; save contents of AX
AND AL, OFH i [Convert
CMF AL, 9 H number
JBE ADD3D i to
ADD AL, 37H ;oits
JMP DISF ; ASCII

ADD3O0
ADD AL, 30H ; equivalent)

DISP MOV AH,0ZH
MOV DL,AL ; [Display the
INT Z21H H number |
POP AX ; restore contents of AX
DEC CH ; decrement digit count
JHZ BACK i 1f not zero repeat
POP AX i Restore registers
FOP CX
POP DX
RET
ENDPE
EKD

Sum of array having decimal numbers

PAGE 52,80
TITLE B086 ALP to find sum of numbers in the array.
.MODEL SMALL

. DATA

Microprocessors and Interfacing 4-17 Assembly Language Programs
AREAY B 12,24,26,63,25,86,20,33,10,35
SUM oW 0
MES DB 10,13, 'Sum of array elements is : §°'
- CODE
START: MOV AX,Rdata + [Initialise
MOV DS AX ! data segment]}
MOV CL, 10D 7 Initialise counter
XOR DI;DI ;i Initialise pointer
LEA BX, ARFAY i Initialise array base pointer
BAC: MOV AL, [BX4DI] ; Get the number
MOV AH,00H ; Make higher byte 00h
ADD SUM, AX s S5UM = EBEUM + number
INC DI i Increment pointer
DEC CL ;s Decremsnt counter
JHNEZ BAC g 1f not 0 go to back
MOV AX, SUM ;s Get the result
CALL ATB4D s Display sum of array
MOV AH, 4CH
INT 21H

ATB4D PROC HEAR

PUSH OX

PUSH CX

EUSH BX

PUSH AX

MOV CK: 0

MOV BX, 10
BACK : MOV DX, 0

DIV BX

FUSH D

INC cx

OR A¥, AX

JNZ BACK

MOV AH, 02H

; Save registers

counter
in BX

¢ Clear digit
i Load 10 decimal
; Clear DX

; divide DX : AX by 10
i Save remainder

; Counter remainder

; test if quotient equal to
i if not zero divide again
i leoad function number

Zero

Microprocessors and Interfacing 4-18 Assembly Language Programs

DISP:

POF DX ; get remainder

ADD DL, 30H : Convert to ASCII
INT 21H ; display digit
LOOF DISP

POF AX ; Hestore registers
POF BX
FOF CX
FOF DX

RET
ENDFP
END

Program 11 : Write B086 ALP to perform non-overlapped block

transfer.

In non overlapped block transfer, source block and destination blocks are different.
Here, we can transfer byte-by-byte or word-by-word data from one block to another block.

Algorithm :

==

L L

Initialize counter.

Initialize source block pointer.

Initialize destination block pointer.

Get the byte from source block.

Store the byte in the destination block.

Increment source, destination pointers and decrement counter.
Repeat steps 4, 5 and & unit counter equal to zero.

Stop.

Microprocessors and Interfacing 4-19 Assembly Language Programs

Flowchart :

Start

Initialize coumnter
Initialize source block pointer
Initialize destination block pointer

Ban

Gal byte from
source block

Siore byle in the
destination block

Increment sourca block poinber
Increment destinalion block pointer
decrement counter

Mon overlapped block transfer

PAGE 52, 80
TITLE Mon owverlapped block transfer.
MODEL SMALL
LSTACE 100
.DATA
ARRAY DB 12H,23H,26H,63H, 25H, 8B&éH, ZFH, 33H, 10H, 35H
HNEW ARR DB 10 DUFP (7}
L CODE
STRRT: MOV AX,Bdata ! [Initialise
MOV DS;AX i data segment and
MOy ES,AX ; extra segment |
MOV CX,10 ¢ Initialise counter

LEA 5I,ARRAY { Initialise source pointer

Microprocessors and Interfacing

4-20

BACKL :

D HEXZ

BAL:

Add30:
DISE:

LEA
CLD

MOV
MOV
REP

LEA
MOV
Mo
CALL
CARLL
INC
LOOF

INT

PEOZ HEAR
PUSH
Mo
MOV
ROL
PUSH
AND
CHMP
JBE
ADD
JHE
ADD
i Y
MO
INT
FOP
DEC
JHE
FOF
FEl
ENDP

DI,NEW ARR

AL, [51]
(DI],AL
MOVEE

DI, NEW_ARR
CX, 10

AH, [DI)

D HEX2
SPACE

DI

BACK]L

AH, 4CH

21H

04H
02H
CL

AL, 9
Adda0
AL, 37H
ISP
AL, 30H
AH, 02H
DL, AL
21H

AX

CH

BAC

Cx

al bl

=

Initialise destination_pointer
Clear directicn flag to
autoincrement S5I and DI

[Get the number

and save number in new arcray

Decrement CX and MOVEE until Cx

will be O

Initialise destination pointer
Initialize counter

Get number

Display number

Display space

Increment destination pointer
if counter not zere, repeat
Return to DOS

Load
Load diglt count

EQCALe Countc

rotate digits
zave contentz of AX
[Convert
number
to
its
ARECTI
equivalent]

[Dizplay ‘the

number]
restore:” contents of Fﬁ“-’..
decrament digit count

if ‘'not zZero ‘repeat

Assembly Language Programs

Microprocessors and Interfacing 4-21 Assembly Language Programs
SPACE PROC NEAR

BUSH AKX i Save registers

POSH DX

MOV AH, 02 ;i Display space

MOV DL,

INT 21H

FOP DX ;i restore registers

POP AX

RET ; return to main program
EHDF

END

Overlapped block transfer

We call two blocks are overlapped when some portion of source and destination
blocks are common. As shown in the Fig. 4.1, source and destination blocks can be
overlapped in two ways. In first case Fig. 4.1 (a) we can begin transfer from starting
location of source block to the starting location of destination block, le
[20000H] « [20005H]

2000EH end 2000EH r-=""TmmmoS » end
]
!]
Destination | !
block - :
: l
I
20009 H fmmmm=nmm- - end : !
20009 H end
20005 H : :w-r: 20005 H Loom e i .
I
h i
Destination | _ | | Saurce
block i | block
| I
1
20000 H & - - - ——ommm o " start 20000 H start
(a) (b}
Fig. 4.1

We can then increment source and destination block pointers and carry on byte
transfer until the pointers reach the end of two blocks, ie upto
[20009H] + [2000EH].

In second case Fig. 4.1 (b} we cannot use the same block transfer procedure, because
there will be over writing of data within the source block, i.e. at first byte transfer contents
of 20000H will be over written in the location 20005H and data at 20005H in the source
block get lost. To avoid over writing in such cases we have to transfer data from source
block to destination block from the end of the block, ie. we have to begin with the

Microprocessors and Interfacing

4.22

Assembly Language Programs

transfer [2000EH] « [20009H], decrement the source and destination pointers and carry on

the byte

ransfer

[20005H] + [20000H]

. MODEL
« 3TACK
: DATA

BACE
TITLE
SMALL
100

AERRY

 CODE
START:

BACKL :

MOV
Mo
MoV
MoV
LEA
LER
5TD

LEA
MOV
MOV

wntil the

a2, 80

overlapped block transfer.

AX,RBdata
DS, Al

ES,; AX
CX,10
S1,ARRAY+9
0I,ARRAY+14

AL, [51]
(DI], AL
MOVSB

DI, ARRAY+5
Cx, 10
AH, [DI]

CALL D_HEXZ
CALL SFACE

INC

LI

LOOF BACKL

MOV
INT

AH, 4CH
£21H

pointer reach the start

[Initialise

of the blocks,

data segment and

BXLCra SEegmen T

]

Initialise rcounter

Initialise source_pointer

i,

Initialise destination_polnter

SET direction flag to

autodecrement

SI and DI

Get the number

and save pumber

in new array

Decremant CM and MOVSE until

Cx will bBe 0

Initialise destination_pointer

Initialize counter

Get number

Display number

Display space

Inceement

If counter not zero repeat
Beturn to DOS

distination pointer

upto

DB, 12H, £3H, 26H, 03H, 25H, 86H, dFH, 33H, 1OH, 35, 7,7, 2,2, ?

Microprocessors and Interfacing 4-23 Assembly Language Programs

< H P Load o digit coaant

S T = -7 . o — -:l" g g
gh 8.5 i | - LTl s b 1 A 1R

[}
1

FISH AKX ! BAawe . Ccontents of (AX
‘ FH - I
number
AL, H c L

.'-'n.

.
LE
i
= ntent T -1
: - ~&THE AL - - ~onnt
ZELD Iepedat
FACE PRC HEAR

FIISH B f Save registers
ELISH DX
WOV BH, 02 ; display space
PN oL,
M 21H
BOFE DX ;i restore registers
POE X
RET i return £4 main program
ENDE
END

Program 12: Write B0B6 ALP to find and count negative numbers from
the array of signed numbers stored in memory.
In sign number representation, number is called negative when its most significant bit

(MSB) is 1. This bit can be checked by masking all other bits with the help of logical AND
instruction.

Microprocessors and Interfacing 4-24 Assembly Language Programs

Algorithm :
1. IniHalize counter.
Initialize array pointer.
Initialize negative number count.
Get the number.
Check sign of number by checking its MSB. If negative increment negative number
count and display the number.
Decrement counter and increment array pointer.
Repeat steps 4, 5 and 6 until counter equal to zero.
Display negative number count.
. Stop.
Flowchart

o W

LR R

GO

]
Initialize counter, array

pointer and nagative nurmber count

i
Gat the numibser
s I=
Diigpdany murber
1
incremant negative number Mo
Ccoun

1

Incrament array poindar
Dacremant counter

Is N
gountar =0 7

Display negative
mumiber count

G

l Microprocessors and Interfacing

4-25 Assembly Language Programs
PAGE 22,80
TITLE Find and count the negative numbers in the array.
MODEL SMALL
LSTACE 100
DATA
ARRAY DB 92ZH, 23H, 96H,; DR3H, 25H, 56H,: ZFH,; 33H, 10H, 35H
MES DB 10,13, '"Hegative numbers are : 5°'
MES1 DE 10,13; 'Total Negative number count is 1 3'
.CODE
START: MOV AX,Bdata ; [Initialise
MOV DS, AX i data segment]
i [RR) Cx,1d ! Initialise counter
Mo BH; 0 ! Imitialise negative number count
equal to O
LE& BF, ARRAY ; Initialise array base pointer
LER DX, MES
MO AH, O09H
INT 21H
BACE: Mo AL, DS5: [BF] i @et the number
[b AH, AL ; Save npumber in AH
AND AL, 80H ! Mask all bitzs except MEB
JZ NEXT ; If MEB = 0 go to next
CALL D_HEXZ ; Otherwise display number
CALL SPACE
INC BH Increment negative number count
MEXT : INC BFP ; Increment array base pointer
LOOF BACE i Decrement counter
i 1f not 0 go to back
LEA DX, MES1
MO BH, O%H
INT £1H
Mo BH,02H
ADD BH, 30H
MOV DL, BH
INT 21H
MOV AH, 4CH : [Exit
INT 21H ; te DOS]

Microprocessors and Interfacing 4-26 Assembly Language Programs

I

D HEXZ PROC NEAR
o LR CL, O4H ;o Load rotate Ccount
[[CH; 028 by Load diglt ‘count
BAC: FOL A¥, CL - rotate digits
FUSH A ; save tcontents of AX
AND AL; ' OFH i [Consvert
CHME ALY 3 number
JBE Add30 i o =
ALl AL, 3J7H e b
JHMP OISE ; BASCEII
Addid:
ADD AL, 30H aquivalent]
DISF: MOV AH, O2ZH
MO Ol AL ; [Display the
IRT 21H : number]
BOPR A ; restorse contants of AX
DEC CH ; decrement digit count
JNZ BAC i if not zero Tepeat
ENLDF
SPACE PROC HEAR
FUSH Fi¥ 4 ; save AX
MOV AH, 0ZH ; [Call DOS routine
Mo BL, % * i to leave space]
IMT 21H ; rastore AX
POP B { return to main program
EET
EHLDE
END

Program 13 : Convert BCD to HEX and HEX to BCD

Write 8086 ALI" to convert 4-digit HEX number into its equivalent BCD number and
S-digit BCD number into its equivalent HEX number. Make your program user friendly to
accept the choices from user for :

a. HEX to BCD

b. BCD to HEX

. EXIT

Dhsplay proper strings to prompt the user while accepting the input and displaying the

resull.

Microprocessors and Interfacing 4.-27 Assembly Language Programs

In this program we use the standard routines explained in the chapter 3 to convert
data from one form to other. However, to select the conversion we display menu on the
screen and display proper messages on the screen to guide user. Therefore, in this
program separate macro named PROMFT is written for display the message. After
accepting the option from the user, the option is checked and proper routine is called to
perform desired operation.

Algorithm :

' Displav menu
a. HEX To BCD
b. BCD To HEX
c. EXIT
ENTER THE CHOICE :
2. Read the opton
It option is 3-exit
1 - Do HEX to BCD conversion
2 - Do BCD to HEX conversion
3. Stop

Flowchart :

GD

Display menu
1. HEX to BCD
2. BCD o HEX
3. EXIT

Read option

CALLHTE

CALLBTH -

Microprocessors and Interfacing 4-28 Assembly Language Programs
FPROMPT MACRD MESSAGE ; Define macro with MESSAGE as a
{ parameter

PUSH AX 7 Save AKX register

MoV AH, 09H ; display message

LEA DX, MESSAGE

INT 21H

POP BX ; restore register

ENDM

+MODEL SHMALL i select small model

.STACE 100

. DATA ; start data segment
MES1 0B 10, 13, 'l. HEX TO BCD §°
MESZ2 DB 10, 13, '2. BCD TO HEX §°
MES3 DB 10, 13, '3, EXIT S
MES4 DB 10, 13, 'ENTER THE CHOICE : 5'
MES5 DB 10, 13, 'ENTER CORRECT CHOQICE : §°"
MESE ce 10, 13,°'s:
MEST DB 10, 13, 'ENTER THE FOUR DIGIT HEX WNUMBER
MESS DB 10, 13, 'EQUIVALENT BCD NUMBER IS 5’
MESS OB 10, 13, 'ENTER THE BCD NUMBER 5"
MES10 DB 10, 13, 'EQUIVALENT HEX NUMBER IS '

NUMBER DOW 7
.CODE
START: MOV AX,

MOV DS,

EDATA
AX

PROMPT
PROMPT
PROMPT
PROMPT

MES1
MESZ
MES3
MES4

: define HUMBER
i start code segment
; [Initialize

i data segment]

MES1
MES2
MES3
MES4

i Display
i Display
: Display
: Display

L

Microprocessors and Interfacing 4-29 Assembly Language Programs
AGAIN: MOV RH, 01 : | READ
INT 21H ! OPTION |

PROMPT MESG

CHME AL, "3
JZ LAST
CME AL,'l"
JHEZ HEXTL
CALL HTE
JHE LAST
NEXTL : CMP AL, '2"
JNZ MEXTZ2
CALL BTH
JMP LAST
HEXTZ: FROMPT MESS
JMP AGAIN
LAST: MOV AH, 4CH
INT 21H

HTE PROC MHEAR

FEOMPFT MEST
CALL R_HEX
PROMPT MESH
CALL D _BCD
RET
ENDFE

et -

-

Fl
Ll

Display MESE

[If choice is 3
exit]

[If choice is 1

Da HEX to BCD conversion
exit]

[If echoice is 2

Do BCD to HEX conversion
exit |

Display MESS5

Return to DOS

Microprocessors and Interfacing 4 -30 Assembly Language Programs
BTH PROC HEAR
FROMPT MESS
HOY CX, 10 i load 10 decimal in €X
Mo BX, 0 ; clear result
BACKZ : MO AH,D1H ! [Read - key
INT Z£1H i with echo]
CHFE AL,D!
JB SKIP i dump if below *0F
CMP AL, "9
JA SKIP ; jump if above ‘8¢
s5UB AL, 30H { convert to BCD
PUSH AX i save digit
MoV AX, BX ; multiply previous- result by 10
MOUL CcCxX
MOV BX, AX i get the result in BX
POP AX i retrieve digit
MOV AH, OOH !
ADD BX, AX ; Add digit wvalue to result
JMP BACK2 : Repeat
SKIP : MoV AX,BX ;' save .the result- in AX
FROMPT MES10 :
CALL D _HEX
RET
ENDF

R_HEX PROC NEAR

MOV
MOV
)
BAC: MOV
INT

CL, 04
sI, 04
BX, 0
AH, 0Ol
21H

CALL CONV

SHL
ADD
DEC
JHE
Moy

ENDP

BX,
BL,
5T

BAC
NUMBER,

CL
AL

R

BX]

load shift count
load iteration count
clear result

[Read a key
with echo]

convert. to. binarcy

ipack four

binary digits

as la-bit

number]

save rasult -at NUMBER

Microprocessors and Interfacing 4-3 Assembly Language Programs
;. The procedure to convert contents of AL into
i hexadecimal equivalent
CONY EBROC HEAR
CHP - AL,"9"
JBE SUBTRARIG r Lf number is between 0 through 9
CMF AL,'a’
JB SUBTRAIY ; 1f latter 13 uppercase
SUB AL, 57H . subtract 57TH . if letter ig lowarcass
JMEP LASTI
SUBTRASO:SUB AL, 3JI0H § convert number
JMF LASTL
SUBTRAZT:SUB AL, 37TH P convert uppercase lettear
LASTL: RET
CONWY EHXDPE
I}_BL'D PROC . MEAR
MOV AX, NUMBER .
MOV CX, O ; Clear digit counter
MOV BX, ‘10 ;} Load 10 decimal in BX
BACK:MOW DX, O ; Clear DX
oIv BX } divide DX AX by 10
PUSH DX ; Save remainder
INC CX ; Counter remalinder
OR AN, AX i test if gueotient egual: to. zero
JWZ BACK i 1f not z2ero divide again
MOV AH, 02H ; load function number
DISP:POP DX ;o get remainder
ADD DL, 30H { Convert to ASCIT |
IRT Z21H 7 display digit
LOOP DISE
RET
ENDP

D_HEX PROC NEAR

MOV CL, . O4H i
MOV CH, O4H i
BAC1: ROL AX, CL :

PUSH AX i

Load rotate count
Load digit count
rotate digits

save contents of AX

Microprocessors and Interfacing 4-32 Assembly Language Programs
AND AL, OFH [Convert
CMP AL, S number
JEE Addl Lo
ADD AL, 37TH trs
JME DISP] ASCII
Add30:
ADD AL, 30H eguivalent]
DESEL: MO AH,02H
MOV D, AL [Display the
IRT Z1H number]
POER AKX restore contents of AX
DEZ CH decrement digit count
JHZ BAC] if not zero repeat
RET
ERDP
END

Program 14 : Multiplication of two 8-bit numbers

Algorithm :
Read 2-digit hex number as a multiplicand.
Bead 2-digit hex number as a multiplier.

omoe Wk

=

Initialize iteration count = 8 since multiplier is 8-bit.
Make result = 0.

Shift result left by 1-bit.
Rotate multiplier 1-bit to check current MSB if bit is 1, Add multiplicand in the

result.

Decrement iteration count and repeat steps 5 and 6 fill iteration count is zero.

8. Display resull.
9. Stop.

Microprocessors and Interfacing

4-33 Assembly Language Programs

Flowchart :

GD

Fead multiplicand Decramant ibaration

counier

Read multiplier

g [o]

Iteration

Make result =0
count =8

]

Display result

Shift rasult laft 1
by 1-bil

3

Rotate multiplier
and cheack currant
MSE of multipleer

l

Add multiplicand in the result

Multiplication of HEX numbers
PROMPT MACRO MESSAGE

PUSH
MO
LEA
INT
POP
ENDHM

LHMODEL SMALL
LSTACK 1040

AX

AH, O09H

DX, MESSAGE
21H

AX

"
L

e

e

+ gelect small

bDefine macro with BMESSAGE as a
parameter

save reglater
display message

restore register

model

Microprocessors and Interfacing 4-34 Assembly Language Programs

.DATE ; start data segment
MUL_ER DB ? i define NUMBER
MUL_AND DB 7 ; define NUMBER

MEZ1 DB 10,13, 'Enter Z-digit hex number as a multiplicand:5"'
MESZ DB 10,13, 'Enter Z-=digit hex number as a multiplier

MESZ BB 10,13, 'The result of multiplication 1is

. CODE ; start code segment
START: MOV AX, E@DATA ! [Imitialize
MOV DS, AX i data segment]

FROMFT MEE1
CALL RERD_HEHE
MoV MUL_AND, BL

PROMPT MES2Z

CALL READ HEX:Z
MOV MUL ER, BL
MOV DH, 00
MOV DL, MUL AND
MoV Cx,0008
MOV AX, 0000
REF1: SEL AKXl
ROL BL, 1
JNC SKIP
ADD AY, DX
SKIP: LOGP REP1
PROMPT MES2
CALL D_HEX
[[R0) AH, 0ZH
MOV DL, *H'
INT 21H
MOV AH, 4CH ; [Exit teo
INT 21H] Dos]

READ HEX2 PROC NEAR

MO cL, 04 Fl load =shift count
MoW 51, 02 H load iteration count
MoV BL, 0 i clear result

BACK : MOV AH, 01 : [Bead a key

Microprocessors and Interfacing 4-35 Assembly Language Programs
INT 21H ; with echo]
CALL COHY H convert to binary
SHL BL; CL ; [pack two
ADD BL, AL H binary digits
DEC 51 : as B-bit
JNZ BACK H number]
RET
ENDP

i The procedure to convert
i hexadecimal eguivalent

CONV PROC HNEAR

SUBTRAZD:

SUBTRAZT:
LAST:
CONW

CHMP
JBE

JB
SUB
JMP
sUB
JME
SUB
RET
ENDP

AL,

AL,

AL,

D HEX FROC NEAR

BaCl:

Add30:

DISPl:

MOV CL,
MOV CH,
ROL AX,
PUSH AX
AND AL,
CHME
JEBE
ADD
JHE

AL,

ADD
MoV
Mo
INT

POFP AX

LAST

LAST

AL, 9
Add30

AL, "'9°*
SUBTRAID

SUBTRA3T

5TH

30H

37H

O4H
J4H
CL

OFH

I7TH

DISPL

AL, 30H
AH, DZH
DL, AL
21H

el

L} e

contents of AL into

if number is
CHMP AL, 'a"

1f letter is uppercase
subtract 57H if

betwean O through 9

letter is lowercase

convert number

Convert uppercase letter

Load rotate count
Load digit count
rotate digits
gave contents of AX
[Convert

number

Lo

its

ASCII

equivalent]

[Display the
number)

restore contents of AX

Microprocessors and Interfacing 4-36 Assembly Language Programs
DEC CH ; decrement digit count
JHNZ BACT ¢ 1f not zero repeat
RET
ENDP
END

Multiplication of BCD numbers

PECMPT MACRO MESSAGE ;Define macro with MESSAGE as a parameter
FUSH A
MO AH, G(%H
LEA DX, HMESSAGE
INT 21H
FOE AX
ENDM
.MODEL SMALL : select small model
LSTACK 140
. DATA i start data segment
MUL EE DB 7 ; define NUMBER
MUL AND DB ? ; define NUMBER
MESL DB 10,13, 'Enter Z2-digit BCD number [<256) as a
multiplicand : %'
MES2 DB 10,13, 'Enter 2Z=-digit BCD number (<256) as a
mueltiplier : 5
MES3 DB 10,13, 'The result of multiplication is : §'
. 2ODE ; start code segment
START: MOV AX, @DATA } [lInitialize
MOV D5, AX : data segment]
EROMET MES1
CALL BTH
O MUL _AHND, AL
PROMPT MESZ
CALL BETH
MoV MUL_ER, AL
MOV BL, AL

Microprocessors and Interfacing 4-37 Assembly Language Programs

MOV DH, 00
MOV DL, MUL_ AND
MOV CX, 0008
MOV AX, 0000
REF1: SHL A1
ROL BL, 1
JHC SKIP1
ADD RY, DX
SKIPl: LOOP REFP1
PROMPT MES3
CALL o BCD
MOV AH, 4CH ¢ [Exit te
INT 21H ¥ Das]
BETH FROC HEAR
MOV cX, 10 ¢ load 10 decimal in CX
MOV BX, 0 ¢ clear result
BACKZ: MOV AH,OlH i [Read key
INT 21H ; with echol
CMP AL, '0"
JB SKIP i jump if below *0°
CMP AL, '5"
Jh EEIP ; jump if above 9°
SUB AL, 30H ¢ convert te BCOD
PUSH AX ¢ osawve digit
MOV AX, BX ;i multiply previous result by 10
MUL CX
MOV B¥, AX f get the result in BX
POF AX i retrieve digit
MOV RH, 0QO0H
RDD BX, AX ¢ Add digit walue to result
JME BACEKZ : Repeat
SKIP : MOV AX; BX ¢y save the result in AX
RET

Microprocessors and Interfacing 4-38 Assembly Language Programs

D -BUL PREOC BEAR

MOV C¥, (0 ; Clear digit counter

MOV BX, 10 : Load 10 decimal in -BX
BACK] : MOV DX, 0 Clear DX

DIV BX ; divide DX . r AX by 10

PUSH DX i Save remainder

THC CX ; Counter remainder

OF RX; AX ;s test if guotient:egual” to zerp

JHZ BACKL i 1f neot zere divide again

MOw AH, 02H : load function . pomber
DISP: POPF DX i -get ‘remaipder

ADD DL, 308 i Conwvert “to- ASCTI

INT 21H iodisplay digit

L3OF DISE

RET

ENDF

END

Program 15 : Divide 4 digit BCD number by 2 digit BCD number.
FROMPT MACRD MESSAGE ;Define macro with MESSAGE as & parameter

FUOSH A
MO AH, O0O0OH
LEA DX, MESSAGE
INT 21H
FOF A
ENDM
.MODEL SMALL ; select small model
.STACK 100
.DATA i start data segment
GIVISOR DB 7 ;i define HNUMBER
DIVIDEMD OW 7 : define MNUMBER
MES1 DB 10,13, 'Enter 4-digit BCD number as dividend:5°
MES2 DB 0,13, "Enter 2-digit BCD number as a divisor:;5°
MES3 DE 10,13, "The Quotient of Division is -

MES4 DB 10,13, 'The Remainder of Divisien iz : &°

Microprocessors and Interfacing 4-39 Assembly Language Programs
.CODE ; start code segment
START: Mo AX, @DATH : [Initialize
MO D5, AX 5 data segment]
PROMPT MES1
CALL ATE
PROMFPT MES2
CALL BETH
MOV DIVISOR, AL
MO AX, DIVIDEND
DIV DIVISOR
Mo BX, AX
FROMPT MES3
MO AH, 0D
CALL D BCD
FROMFT MES3
MOV AH, 00
MOV AL, BH
CALL D _BCD
MOV AH; 4CH ; [Exit to
INT 21H H DOs]
ETH FROC HNEAR
MoV CX, .10 i load 10 decimal, in. CX
MO BX, ‘0 ¢ clear result
BACKZ s [AH, O1H ; [Read key
INT Z1H ¢ with achal
CME KL, "0"*
JH SKIPL F jump - if kbelow "0°
CHEP AL, "9
JA SKIP1 f = Jump’ AL above - MRY
SUE AL, 30H 7o convert toe BCD
PUSH AX Fogave digit
MOV A¥X, BX J-moltipgly previous: result-by - 10

Microprocessors and Interfacing 4-40 Assembly Language Programs

<

MUL CX S, 2
MOV BX, AX ; get. the result in BX
POP AX ; retrieve digit
MOV AH, OOH el
ADD BX, BX ; Add digit value to result
JMP BACH2 ; Repeat . °
SKIFl: MOV AX,BX ; save the result in AX
RET ; :
ENDE

D BCD PROC NEAR

PUSH BX :
MOV CX, 0 ; Clear digit counter
MOV BX, 10 ; Load 10 decimal in BX
BACKEL: MOV DX, O ; Clear DX '
DIV BX ; divide DX : BX by 10
PUSH DX ; Save remainder
INC CX ; Counter zemainder
OR - AX, AX ; test if guotient equal to zero
JHZ -BACKl } 1f not zeroc-divide 'again
MOV. AH, O02H ¢ load: function number
DISF: FOP DX i oget remai-nder
ADD DL, 30H ; Convert to ASCII
INT Z1H i display digit
LOOP DLSF
FOF BX
RET
EHDE

ATE PROC HNEAR

PUSH CX i Save reglsters
FUSH BX
PUSH AX
MOV CX, 10 i load 10 decimal in CX
MOV BX. O ;7 clear result
BACE : MOV AH,O0lH ;i [Read key
INT Z1H ; with echol]

CMP AL, "D’

Microprocessors and Interfacing 4-41 Assembly Language Programs

PUSH AX
MOV AH,
LEA DX,
INT 21H
PoP AX
ENDM

-MODEL SMALL
«STACK 100

.DATA

NHUMEBER DW 3

-

JB - SKIP Fo9ump Af below 0°
CME. "~ AL, "9"
Jh < SKIF ;o Jump. - if above Y3
sUB AL, -30H j-oonvert to EBCD
FUSH AX ;. gave digit
MOV AXy - BX joomalEiply previous -resuli by 10
MUL CX
MOV BX . AN Fooget the resulb 'in B
POE - RX ¢ ratrieve digit
Mov AH, OO0OH
ADD BX; AX Foadd digit waloe toresult
JME CBACKE i Repeat
SHIP: MO DIVIDEND, BX { save the rasult "in :NUMBER
FOF BRX ;- Restore registers
POP BX
BOP CX
RET
ENDP
END

Program 16 : To perform conversion of temperature from °F to °C.
FROMPT MACRD MESSAGE ;Define macro with MESSAGE as a parameter

0%H
MESSAGE

! select small model

7 start data segment
i define NUMBER

MES1 DB 10,13, 'Enter Temperature in Degree FAHRENEIT : &'
MESZ DB 10,13, 'The Temperature in Degree Celsius iz : %7

Microprocessors and Interfacing 4-42 Assembly Language Programs

.CODE ; start code segment
START: MOV AX, @DATA ¢ [Initialize
MOV DS, AX i data segment]

FROMPT MES1

CALL ATH ; Get the Temperature in F
HMov Ax, NUMBER
SUB AX, 20H i Subtract 32
Mo NUMBER., AX
MOV BX, 03
MO cx,09
UL BX i Multiply by 5
DIV CX ; Divide by 9
Mo NUMBER, DX : Save remainder
FROMET MES2)
CALL O _BCD ; Display result in decimal
CHMP NUMEBER, 0 i If remainder is zero exit
JZ LAST
MOV DL, *'.' + Display decimal point
MOV AH, D2H
INT 21H
MO AX, 00E4H { Multiply remainder by 100
MUL NUMBER ; Divide result by 9
DIV CxX
CALL D_BCD ;i display fractions
LAST: LT AH, 4CH i [Exit to

INT 21H H DOS]

Microprocessors and Interfacing 4-43 Assembly Language Programs
D BCD - PROC NEAR

PUSH CX

MOV CX. 0 ; Clear digit counter

MOV BX, 10 foLoad 10 .decimal in BX
BACEL: MOV DX, 0 p o Clear DX

DIV BX ¢ cdivide DX AX by 10

PUSH DX i -Save remainder

ING X ¢ Counter remainder

OR AX, . AX : test if quotient egual to zero

JNZ BACE1 jdf not zearc divide again

MOV. AH, O0ZH Fo/load function number
DIEE: POF DX i oget remainder

ADD - DL, - 30H P oConvert to-ASCTI

INT 21H poodisplay digit

LOOP DISP

POP CX

RET

ENDP
ATEB FROC' HWEAR

PUSH'CK § 'Bave. registers

PUSH BX

PUSH AX

MOV ~CX, . "10 fooload. 10 decimal -in CK

MOV BX, 0 i clear ‘'result
BACK: MOV - AH,O1H : [Read key

INT. 21H i with. echo]

CMP ' AL,'0"

JB . SKIF Fooqump - cif o below - 0T

CME- AL, '3"

Jh ' " SKIP Fojumpt Lf above T MOF

SUB AL, 30H i convert to BCD

PUSH AX poosave digit

MOV AX, “BX jomultiply previgus result by 10

MUL . CX

MOV B¥,; RX ioget the "result in BE

POFP -~ AK ¢ retrieve digit

MOV AH, O0H

Microprocessors and Interfacing 4-44 Assembly Language Programs

ADD BX;, AX ; Add digit wmalue to result
JHME BACE i Repeat
SEI1P: MOV NUMBER, BX ; save the resuvlt in HNUMBER
FOP AX : Bestore regigtars
ECP BX
POF X
HET
ENDP

ENLD

Program 17 : String operations
Program Statement : Write B086 ALP for the following operations on the string entered
by the user.
a. Calculate length of the string.
b. Reverse the string.
¢. Check whether the string is palindrome or not.
Make your program user friendly by providing MENU like :
a. Enter the string,
b. Calculate length of siring.
¢. Heverse siring.
d. Check palindrome.
e. Exit.

Here we use PROMPT macro to display the message on the screen, accept choice from
the user and call proper procedure to perform desired task. To enter a string we use
function 0AH of INT21. This function accepts a siring and stores it in the buffer along
with its length. Let us see the algorithm and flow chart.

Microprocessors and Interfacing 4 - 45 Assembly Language Programs

Algorithm :
1. Display Menu
a. Enter the string,
b. Calculate length of the string.
¢. Reverse the string.
d. Check whether the string is palindrome or not.
~. ExiL.
Enter the option : -
2. Read the option
If option is
a. Read the string.
b. Read the string length and display it.
c. Initialize pointer at the end of the string and display the string from end to
start.
d. 1) Initialize two pointers one at start and other at the end.
i) Compare two bytes; if not equal stop and display string is not palindrome.
iii) Increment start pointer and decrement end pointer.
iv) Repeat step i) and ifi) until two pointers overlap ie. until start pointer
reach the half the string.
e, Exit to DOS.
3. Stop.

Microprocessors and Interfacing 4-48 Assembly Language Programs

Flowchart :

(start)
L

Display meanu

Read opbon

i

Yas

I
Mo Read string

Display length of
the string

Cheack palindroma 4-‘

Display message
anter comect oplian

Microprocessors and Interfacing 4 - 47 Assembly Language Programs

Flowchart : String Reverse

&

Sal poinler o
End of the siring

L

Count = String Langth

/Elrsplag,' poinitad char&ﬂar/

Foinber =Poanler -1
Couni = Count -1

Flowchart : String Palindrome

Start

Initialize pointer at
the star of the siang

i

Initialize pointer at
tha and of the siring

Indiadize countar = langthf2

L

Compare charactens
pofnted by two sirings

Dacremant coundar

Is
L counter = 0 Display message
string is mat palindrome
Yes
Display message

string is palmdromea

d

€D

Microprocessors and Interfacing

4-48 Assembly Language Programs

PROMPT MACRO MESSAGE

jbefine macro with

MESSAGE az a parameter

FUISH A ; save AX register
MOV AH, 0%H } display message
LEA DX, MESSAGE
INT 21H
FOP AX ; restore AX register
ENDM
LMODEL SMALL J select small model
LSTACE 100
. DATHE 7 Btart data segment
MES1 DB 10, 13, '1. ENTER THE STRING 5°
MES2 ce 1¢, 13, '2. CALCULATE THE LENGTH OF STRING 5'
MES3 DB 10, 13, '3. REVERSE THE STRING 5°'
MES4 DB 10, 13, '4. PALINDROME 3°
MESS bB 10, 13, '5. EXIT §°'
MESE CB 10, 13, 'ENTER THE CHOICE : §'
MEST CB 10, 13, 'EWTER CORRECT CHOICE : &'
MESE CB 10, 13, 's5¢
MESS DB 14d, 13, 'FAILED STRING IS MISSIHNG - PLEASE
ENTER THE STRINGS'
MES10 DB 10, 13, 'S5TRING LENGTH IN DECIMAL IS5 : 5°'
MES11 DB 10, 13, 'STRING IS5 NOT PALINDROME 3'
MES12 DB 10, 13, 'STRING IS PALINDROME 5°
FLAG DB O
MES13 DB 10, 13, 'ENTER THE STRING: 35°'
MES14 CBE 10, 13, "THE STRING IS g
BUFF DE B8O
CE O
DE B0 DUP({D)

COUNTERL DW O

COUNTERZ

oW 0

Microprocessors and Interfacing 4-49 Assembly Language Programs

NUMBER DR 7 ¢ define KUMBER
CODE i start code segment
START : MOV AX, BDATA ¢ [Imitialize

MoV DS, AX H data segment]
BEGIN: PROMFT HMESE ; Display MESS

FROMPT MESSH ; Display HMESE

PROMPT MES1 i Display MES1

PROMPT MESZ : Display MESZ

PROMPT MES3 i Display MES3

PROMPT MES4 ; Display MES4

FROMPT MESS i Diasplay MESS

PROMPT MES6 ; Display MESE
AGAIN: MOV AH, 01 : [READ

INT 21H : QPTION]

PROMET MESSH ; Display MESH

CHMP AL, "'5" ¢! | If choice is 5

JE LAST : exit]

CMP AL, "1°* ;| If choice 15 1

JHE HEXT1

CALL E_STR ; Enter the string

FROMFT MESSH
PROMPT MES14

CALL D STR i Display the string
JHP BEGIN ; exit]
HNEXTL: CMP &L, Y2 i | If choice is 2
JHE HEXTZ = .
CALL L _STR H Calculate the length of the string
JMP BEGIN H exit |
HEXT2: CMP AL, "3? ;[If choice iz 3
JNZ HEXT3

CALL R_STR i Reverse the string

Microprocessors and Interfacing 4 -50 Assembly Language Programs
JME BEGIN H exit]
NEXT3: CMP AL, "4° i [If choice is 4
JNZ WEXT4
CALL F STR ; Palindrome of the string
JMP BEGIN : exit |
NEXT4: PROMPT MES7 ; Display MES7
JHP AGAIN
LAST: MOV AH, 4CH + Return to DOS
INT Z21H

E_STR PROC HEAR

PROMPT
MOV
LEA
INT
MO
RET
ENDP

L STR PROC HEAR

SKIF:

CME
JNZ
FROMFT
RET
MO
PROMFT
CALL
RET
ENDP

R_STR FROC MHEAR

cMe
JNZ
PROMPT
RET

MES13
AR, OAH
DX, BUFF
Z21H
FLAG, 1

FLAG, O
SKIP
MESS

AL, BUFF+1

MESL10
D HEX

FLAG, O
SKIPl
MESS

Display message MES13

I/F the string.

Microprocessors and Interfacing

4 - 51 Assembly Language Programs

SKIFL: CALL DR_STR
RET
ENDP
P_STR PROC NEAR
LEA BX,BUFF+2
MOV CH, 00H
MOV CL,BUFF+1
MOV DI,CX
DEC DI
SAR CL,1
MOV SI,00H
BACKY: MOV AL, [BX + DI]
MOV AH, [BX + 5I)
CMP AL; AH
JNZ LAST2
DEC DI
INC 51
DEC CL
JNZ BACKA4
PROMPT MES12
HET
LASTZ2: PROMPT MES11
RET
ENDP
D STR PROC NEAR
LEA BX, BUFF
MOV CH, 00H
MOV CL,BUFF +1
MOV DI, 00
BACK: MOV DL, [BX+DI+2]
MOV BH, 02H
INT 21H
INC DI
LOOP BACK
RET

ENDF

met starting address of string

Get
Get
Check for palindrome

If mot exit

Decrement end pointer
Increment starting pointer
Decrement counter
If count pot = 0,
Display message 12

the right most character
the left most character

repeat

Display message 1l

[Take character

count in
DI]
Paint ko the start

character and read 1t

Digsplay the character
Decrement count
Repeat until count is 0

Microprocessors and Interfacing 4 -52 Assembly Language Programs

DR _STE FPROC HEAR
LEA BX,BUFF

Mo CH, DOH i | Take character
MOV CL,BUFF+1 - count in
MOV DI, CX : DI]
BACK3: MOV DL, [BX+DI+1] ; Point to the start
: character and read it
MOV AH, 02K
INT Z1H ; Display the character
DEC DI { Decrement count
JNZ BACK3 ; Repeat until count is 0
EET
ENDP

D_HEX FPROC MNEAR

MOV AH, O0O0H i Clear AH

ARM ¢ Conwvert to BCD

ADD AX, 3030H { Convert to ASCII

MOV BX, AX 1 Save result

MOV DL, BH ; Load first digit (MSD)
MOV AH, 02 ; Leoad function number

INT 2Z1H ; Display first digit (MSD)
MOV DL, BL s Leoad second digit (LED)
INT 21H ; Display second digit (LSD)
RET

ENDP

END

Program 18 : String Manipulations
Program Statement :
Write 8086 ALF to perform siring manipulation. The strings to be accepted from the

user is to be stored in code segment Module_1 and write FAR PROCEDURES in code
segment Module_2 for following operations on the string.

a. Concatenation of two strings.

b. Compare two strings.

¢. Mumber of occurrences of a sub-string in the given string.
d

. Find number of words, characters and capital letters from the given text in the
data segmenl.

Microprocessors and Interfacing 4-53 Assembly Language Programs

Note : Use PUBLIC and EXTERN directive. Create «OB] files of both the modules and
link them to create an EXE file. Command : Tlink M1.0B] M2.0B]

In this experiment we have to write two sasm programs one for accepting strings and
one for procedures.
Algorithm : Module_1
1. Display Menu
a. Enter the strings.
b. Concatenation of two strings.
c. Compare two strings
d. Find number of occurrences of a substring.
€. Find words, characters and capital letters.
f. Exit
2. Read option
It's option is
1. Read two strings.
Concabenate two sirings.
Compare bwo strings.
Find number of occurrences of a substring.
Find words, characters and capital letters.
Exit.

oo N

3. Stop

M1 : String operations
PROMPT MACRO MESSAGE ;Define macro with MESSAGE as a parameter

PUSH A 7 Save registers
PUSH D
MOV AH, 0%SH i display message
LEA DX; MESSAGE
INT 21H
POP DX ; restore registers
POF o
ENDM

.MODEL SMALL ' i select small model

LSTACKE 100

Microprocessors and Interfacing

4-54 Assembly Language Programs

. DATA

«CODE

"
’

start

FUBLIC BUFF1L
PUBLIC BUFFZ
PUBLIC BUFF3

MES1
MESZ
MES3
MES4

MESS

MES6
MES7
MESE
MESY
MES10

MES11
MES12
MES13

FLAG
MES14

MES15

BUFF1

BUFF2

BUEF3

EXTRN

EXTRN

EXTEN
EXTHN

LB
DB
DB
DB

DB

DB
DB
DB
DB
DB

DB
[tz

DB

DB
)=
CB

B
B
DB
DB
0B
CE
CHE
DB
OB

10,
10,
10,
10,

10,

10,
10,
10,
10,
10,

10,
10,
10,

o

10,13,
1G,13,

B0
0
B0
BO
0
80
80
0
a0

13,
13,
13,
13,

13,

13,
13,
13,
13,
13,

13,
13,
13,

CUB {0}

DUE ({0}

DUF (0)
start

CON_STR:FAR
COM_STR:FAR
SUEB STR:FAR
FWCC_STR:FAR

data segment

"1, ENTER THE STRING &'

'2. CONCATENATION OF TWO STRINGS §°
"3, COMPARE TWO STRINGS 5!

"4, NUMBER OF OCCURENCES OF A
SUBSTRIRG 5°

"3. FIND WORDS, CHARARCTERS AND CAPITAL

LETTERS &'

6. EXIT 357

"ENTER THE CHOICE : §°'

"ENTER CORRECT CHOICE : 5§°'

.5.

"STRING IS MISSING - PLEASE ENTER

THE STRINGS'

"CONCATENATED STRING IS : 3°'
"TWO STRINGS ARE SAME 3°'
"TWO STRINGS ARE NOT SAME §°

'ENTER THE STRING: 3°'
'"THE STRING I5 : %'

code segment

Microprocessors and Interfacing 4 -55 Assembly Language Programs
START: MOV AX, @DATA ¢ [Initialize
MOV LS, AX : data segment]
MOV ES, AX
BEGIN: PROMPT MESH ; Display MESE
PROMET HMESS i Display MESE
PROMET MES1 ; Display MES]
FROMET MES2 ; Display MESZ
FROMPT MES3 ; Display MES3
PROMPT MES & i Display MES4
PROMET MESS ; Display MESS
PROMET MES & i Display MESo
PROMET MES7 i Display MEST
BAGATN: MO BH, 01 : | EERD
INT 21H ! OPTION |
CHME AL, '®" ;| If choice is &
JZ LAST ; exit |
Mo BL; FLAG { Theck for first occurrence
CMF BL, QO
JHZ SKIP { if not skip
CHMF AL, '1l" i check if choice is 1
JE SKIF : 1f wyes skip
FROMPT MES10 i otherwise give error message
JMF BEGIN : and enter the strings
SKIF: PROMET MESS ¢ Display MESS
CHE AL, "1 i [If choice iz 1
JHZ HEXT1
LEA D¥, BUFF1
CALL E STR i Enter the stringl
LEA DX, BUFF2
CALL E _STR H Enter the string?
MOV FLAG, 1
JMP BEGIN ; exit |

Microprocessors and Interfacing .

4 - 56 Assembly Language Programs

NEXT1:

NEXTZ:

NEXT2:

HEXT4 :

HEXTS:

E_STR PROC NEAR

END

CMP
JNZ
CALL

CMP
JNZ
CALL
JMP

CHMP
JNZ
CALL

CHP
JNEZ
CALL

INT

PROMPT
MOV
INT
RET
EHDF

AL, '2'
NEXT2
CON_STR
LAST

AL, '3’
HEXT3
COM_STR
BEGIN

AL, '"4"
HNEXT4
SUB_STR

BEGIN
AL, 'S’
HEXTS
FWCC_STR

BEGIH

MESH
AGAIN

AH, 4CH
e1H

MES1

AH, OAH
21H

mE WE We we

e

[If choice is 2

Concatenate two strings

exit |

[If choice is 3

Compare two string
exit |

[If cheoice is 4
Find npnumber of occurences of a
sub-string in the given string

exit |
[If choice iz 4

Find word, character and capital
letters in the string

exit |

Display MESS

Feturn to DOS

Display meszsage MES1
I/P the string.

Microprocessors and Interfacing 4 - 57 Assembly Language Programs

M2 : For string operations
.MODEL SMALL

LSTACK 100

- DATA

EXTEM BUFF1:BYTE

EXTRN BUFF2:BYTE

EXTEN BUFF3:BYTE

MES51 DB 14,13, "STRINGS ARE SAME 5°

MESSZ DB 10,13, "STRINGS ARE NOT SAME 5°

MESS3 DB 10,13, 'NUMBER OF ALPHABETS IN THE STRING
ARE: 5"

MESS4 DB 10,13, '"HUMBER OF CAPITAL LETTERS IN THE STRING
ARE: 5"

MESSS DB 10,13, '"NUMEER OF WORDS IN THE STRING ARE : §5°

MESSe DB 10,13, 'NUMBER OF OCCURRENCES OF SUBSTRING IN
THE STRING ARE : 5°'

WELAG DB o

ARCOUNT DB O

CCOUNT DE 0 i

WCOUNT De 1

C ADDRDW ? ; current address of pointer
E ADDRDW ? ; End address of string

.CODE

PUBLIC CON_STR
PUBLIC COM_STR
PUBLIC SUB_STR
PUBLIC FWCC STR

CON_STR FROC FAR

CLD

MOV CH, 0D i copy string 1
MOV CL, BUFF1+1

LEA 51, BUFFl+2

LEA DI, BUFF3+2

REPZ MOVSE

MOV CH, 0D i copy string 2
MOV CL, BUFF2+1

/

Microprocessors and Interfacing 4-58 Assembly Language Programs

DISNEXT:

LEA

51, BUFF2+2

REPZ MOVSB

L [

ADD
MO

MOV
LER
MoV
MOV
INT
INC

CL, BUFFl+l1 ; calculate and store length of
concatenated string

CL, BUFFZ+1 ;

BUFF3+1,CL

CH, 00 i* Display concatenated string
SI,BUFF3+2

AH, 0Z2H

DL. [5I]

21H

sl

LOOF DISHNEXT

RET

CON_STR ENDF

COM STR PROC FAR

HOTEQ:

MOV
MOV
CMP
JHNZ
CLD
MOV
LEA
LER

CH, BUFF1+1 ¢ check two string character by character
CL,BUFFZ+1

CH,CL

HOTEQ

CH, 00
DI, BUFF2+42

REFE CMPSB

JNZ

MOV
LEA
INT
JMP
MOV

LEA
INT

NOTEQ

AH,; 09H i 1f equal display message accordingly

D¥,MES5E51

21H

RE

AH, 09H i L1f not egqual display message
accordingly

DX,MESS2Z

21H

Microprocessors and Interfacing 4 -59 Assembly Language Programs
RE: RET
CoM_STR ENDF

SUB_STR PROC FAR

5T1:

BEBB:

HNNEXT =

LLLAST:

INC

LOOP

INC
CHME
JHEZ

JME

MOV
I[NC
Mo
CMF
JHNZ

MOV
LER
INT
MOV

BL, Q0
51,
C_ADDR, SI
DL,
DH, 00

AX, SI

AX DX
E_ADDR, AX
CH: D

CL, BUFF2+1
LI, BUFF2+2
BH, [SI]

BH,BYTE PTR

HHNEXT

51

DI
EEE

EL

sI,

5T1

E_ADDR

LLLAST

S1,C_ADDR
21
C_ADDR, SI
$1, E_ADDR
ST1

AH,0%H

0¥, MESSE
21H

AL, BL

CALL DIS_HEX

RET

BUFFl+2Z

BUFF1+1

[DI] :

=

L
=

r

Load current address

laad end address

load length of substring
initialize pointer to substring

compare substring characters

if mnot egual go to HNHREXT

otherwise increment character pointers
and confine

if substring occurs increment count
check for end of string

if not zeroc go to check more
OeCUrFancas

if end of string go to display number

of occurrences

maodify current address

display number of occurrences of string

Microprocessors and Interfacing

4 - 60 Assembly Language Programs

SUB_STR EHDE

FWCC_STR PROC FAR

BE:

NHEXT:

NNEXT1:

LLAST:

CMP
Jh

INC
INC

CMP
JB
CMP
JA
INC

INGC

CH, 0d

CL, BUFFl+1
51, BUFF1+2
AL, [5I]

AL,"
NNEXT

AL, WFLAG
AL, D

LLAST
WELAG, O
WCOUNT
LLAST
WELAG, 1

AL, "A’
LLAST

AL, 'Z'
NNEXT1
ACOUNT
CCOUNT

AL, 'a'
LLAST
AL,"z"
LLAST
ACOUNT

51

LOOP BB

MO
LEA
INT
MOV

AH, O9H
DX, MESS3
21H

AL, ACOUNT

¥
P

i

check of space

if space occurs increment word count

LIF AL »>= '"A'" g& AL <= '3

; check 1if alphabet
if yes increment alphabet count

+ENDIF

LIF AL >»= '"a' g& AL <= 'z°

check i1f alphabet
if yes increment alphabet count

.ENDIF

display alphabet count

Microprocessors and Interfacing 4 -61 Assembly Language Programs
CALL DIS_HEX

MOV AH, 05%H i display character count
LEA DX,MES554

INT 21H

MOV AL, CCOUNT

CALL DIS_HEX

MOV AH,; O9H ; display word count
LEA DX,MESSS

INT 21H

MOV AL, WCOUNT

CALL DIS_HEX

MOV ACOUNT, O
MOV CCOUNT, O
MOV WCOUNT, 1

RET
FWCC_STR ENDE

DIS HEX PROC NEAR

MOV RH, - 00R i.-Clear KH
ARM

i -Convect, to BCD
ADD AX, - J030H ¥ o Convert ~to -ASCITI
MOV BX; AX ;. Save. result
MOV DLy - BH t - Load' - first! digit (M3D)
MOV AH, .02 ; Load function number
INT 21H ; Display first digit (MSD)
MOV DL, “BL ¢ -Load second- digit. (LSD)
INT21H ; 'Display second digit . (LSD)
RET
ENDP

END

Microprocessors and Interfacing 4 - 62 Assembly Language Programs

Program 19 : Sorting of Array

Program Statement : Write 8086 ALP to arrange the numbers stored in the array in
ascending as well as descending order. Assume that the first location in the array holds
the number of elements in the array and successive memory locations will be actual array
elements. Write separate subroutine to arrange the numbers in ascending and descending
order. Accept key from the user.

If user enters 1 : Arrange in ascending order
If user enters 2 : Arrange in descending order

Sorting of Array
FROMPT MACRO MESSAGE ; Dafine macro with MESSAGE as a
FUSH AX ; parameter save register
MOV AH, O3SH ; display message
LEA DX, MESSAGE
INT 2Z1H
POP BX ; restore register
ENDM
.MODEL SMALL
LETACKE 100
.DATHE
ARRAY DB 10, 53H,20H,30H,25H,50H, 09H, 70H, 13H, 90H, 00H
MES1 DB 10;,13; 'l. SORT ARRAY IN THE ASCENDING ORDER &°
MESZ DB 10,13, "2, SORT ARRAY IN THE DESCENDING ORDER 5°
MES3 DB 10,13, '3. EXIT %°
MES4 DB 10,13, 'ENTER THE CHOICE : 5"
MESS PE 10,13, 'SORTED ARRAY IS5 : &'
MES6 oe 10,13, 'ENTER CORRECT CHOICE : 35°
MES7 DB 10,13, 'S¢
.CODE
START : MoV AX,Bdata i [Initialise
MOV D3, AX : data segment]

FROMPT MES1
PROMPT MES?Z
PROMPT MES3
PROMPT MES4

Microprocessors and Interfacing 4-63 Assembly Language Programs
STL: MOV AH, OLH
INT 21H
CMP AL,'3"
JE LAST
CMP AL,'1"®
JHZ MEXT
PROMPT MEST
CALL ASC
JHE LAST
MEXT: CHMP RL,"2°'
JHEZ MEXTL
PROMPT MES7
CALL DEC
JHMPE LAST
HMEXT1: PROMPT MESE
JHEP 5T1
LAST: o kR EH, 4CH
INT 21H
ARSC PROC NEAR
MO CL, ARRAY ; Initialise counterl
BBBl: MO CH, ARRAY i Imitialise counterZ
DEC CH
XOR DI,DI ; Inmitialise pointer
LEA BX, ARRAY ; Imitialise array base pointer
BACEL: MOV DL, [BR+DI+l] ; Get the number
CME DL, [BX+DI+2] ; Compare it with next number
JEE SKIP1
i (AT AH, [BX+DI+2] ; Otherwise
MC [BX+DI+2],DL ; exchanga
o L [BX+DI+1],AH ; two numbers
SKIPl: INC DI
DEC CH
JHZ BACK1
DEC CL
JHZ EEBL

Microprocessors and Interfacing

4-64

Assembly Language Programs

AGL:

DEC PROC

BBEB:

BACK:

SKIP:

PROMPT MESS

MOV CH, 00
MOV CL, ARRAY
LEA DI, ARRAY
INC DI
INC DI
MOV AL, [DI]
CALL D_HEX2Z
PUSH AX

PUSH La
MOV AH,02H
MOV DL, " °*
INT 21H

POP DX

POP AX

LOOP AG1

RET

ENDP

NEAR
MOV CL, ARRAY

MOV CH, ARRAY

DEC CH

XOR DI, DI

LEA BX, ARRAY
MOV DL, [BX+DI+1]
CMP DL, [BX+DI+2]
JRE SKIFP
MOV AH, [BX+DI+2]
MOV [BX+DI+2],DL
MOV [BX+DI+1),AH
ING DI

DEC CH

JNZ BACK

DEC CL
JHZ BEB

a
F

s

e g

L]

Display sorted array

Initialise
Initialise

Initialisa
Initialise

counterl
counkterd

pointer
array base pointer

Get the number
Compare it with next number

Otherwise
exchange

two numbers

Microprocessors and Interfacing 4 -65 Assembly Language Programs
FROMPT MES5

MOV CH, 00
MoV CL, ARRAY
LEAR DI, ARRRY
INC DI

AG: ING DI
MOV AL, [DI]
CALL D_HEXZ { Display sorted array
FUSH A
FUSH DX
MOV BH, 02H
MoV oL,"* '
INT 21H
POP DX
FOFP AX
LOGP AG
RET
ENDP

D HEXZ PROC NEAR

PUSH CX

MOV CL, U4H i Load rotate count

MOV CH, 02H + Load digit count
BALC: ROL A¥, CL ; rotate digits

PUSH AX i save contents of AX

AMD AL, OFH ¢ [Cenvert

CHMP AL, S r numbher

JBE Add30 ;i Eo

ADD AL, 37H ;Poits

JME DISF i ASCIIL

Addig:
ADD AL, 30H ; eguivalent]

Microprocessors and Interfacing

4-66

Assembly Language Programs

DISP:

AH, 0Z2H
DL, AL

21H
A
CH
BAC
cX

i [Display the

H number]

; restore contents of AX
s decrement digit count
s 1f not zero repeat

Program 20 : Program to search a given byte in the string

.MODEL SMALL

. DATA
M1
M2
CHAR
ADDR
BUFF

. CODE

START

BACE

LEA
INT
MoV
INT

MOV
MOV
LEA
Mo
MO
CHMP

JZ

INC
DEC
JHEZ
MOV
LEA
INT

10,
10,
o
0
B0
L]
80 pur (Q)

13,
13,

AX,Adata
DS, AX
AH,09H

'ENTER THE STRING
'"GIVEN

e TR e

DX,0FFSET M1

Z1H

AH, OAH
0¥, BOFFE
21"

AH,01

214
CHAR, AL
CH, 00H
CL, BUFF+1
BX,BUFF+2
DI, 00H
DL, [BX+DI]
DL, CHAR

NEXT
DI

CX
BACK
AH,0%H
DX, M2
21H

Tem Wy g R

$P

BYTE IS5 NOT IN THE STRING 5°'

[Initialise
data segment]
Dizplay messagel

Input the string

[Read character
from keyboard]
save character

Take character count in CX

point to the first character
compare string character with
given character

if match occurs go to next

Decrement character counter
If not = 0, repeat

[Display message M2

on the

monitor]

Microprocessors and Interfacing 4-67 Assembly Language Programs
JHP LAST
HEXT: MOV RDDE, DI { save relative address of the
¢ byte from the starting
; locaticon of the string
LAST: MOV AH, 4CH ; | Terminate and
INT Z21H H Exit to DOE]
END START

Program 21 : Program to find LCM of two 16-bit unsigned numbers

{Softcopy of this program, P24.asm is available at www.vtubooks.com)
If we divide the first number by the second number and there is no remainder, then
the first number is the LCM. In case of remainder, it is necessary to add first number to it

to get the new first number. After addition we have to divide the new first number by the
second number to check if the remainder is zero. If remainder is not zero again add the

original first number to new one and repeat the process.

For example, if two numbers are 20 and 15 then we get LCM as follows :

20+ 15 = 1 Remainder 5ie. 20
20+ 20 = 40 = 15 = 2 Remainder 10 i.e. = 0
40 + 20 = 60 + 15 = 4 Remainder 0
LCM = 60
HAME LCM

PAGE 0,80
TITLE program
LMODEL SMALL
LSTACK o614
« DATHA
NUMBERS
LCH
L CODE
START:

Q015
[

DW 0020,
DW 2 DUP

MoV
MOV
MOV

AX, BDATA
DS, AX

DX, 0

MOV AN, NUMBERS
MOV BX, NUMBERS+2
PUSH AX

PUSH DX

DIV BX

CME DX, 0

JE EXIT

POF DX

POP AX

ADD AX,NUMBERS
JNC SKIP

INC DX

BALK:

e Wa WE WE e TaE e

ko find LCHM of two lé-bit unsigned numbecrs

[Initialize
data segment]

Get tha first number
Get the second number
[Save the
first number]
Divide if by second number
Check if remainder = 0
if remainder = 0 then exit

First number + first number

Microprocessors and Interfacing 4 -68 Assembly Language Programs

SKIP: JHE
EXIT: POP
POF
MOV
. INT
END

BACE § Goto BACE

LCM+2 i [Gec

LCHM i the LCHM]

AH, 4CH ;| Terminate and
21H i Exit to DOS]
START

Program 22 : Program to find HCF of two numbers.

(Softcopy of this program, P25.asm is available at www.vtubooks.com)

To hind the HCF of two numbers we have to divide greater number by smaller
number, if remainder is zero, divisor is a HCF. If remainder is not zero, remainder
becomes new divisor and previous divisor becomes dividend and this process is repeated

until we get remainder 0.

For example, if numbers are 20 and 15 we can find HCF as follows :

20+15 =
15+5 =
HCF =
dmodael =small
.8tack 100
data
CR EQU
LF EQU
MES_1 DB
MES_2 DE
MES 3 DB
MES_4 DB
MULTI
RESULT
DIVISOR
DIVIDEND
INFL
INEZ2
Loode
MAIN: Mo
MoV
Mo
MO
INT
LEA
MO

1 Remainder 5 i.e. 2 0

3 Remainder 0

5

0aH
0ODH
CR,
CR,
CR,
CE,
DW
D
DW
]

DB
OB
DB
DB
DB
DB

AX
DS,
RH,
DX,
21H

DX, INPL
AH, DAH

LF, '"ENTER 4-DIGIT FIRST HEX NO',CR,LF,'S’
LF; "ENTER 4-DIGIT SECOND HEX HNO',CR,LF,'5’
LF, 'INPUT IS5 INVALID BCD §°

LF, '"THE HCF IS : §°

1,10,100,1000

(00)

(00)

{00)

05
aa
05 DUP(0)
035
0o
05 DUP(0)

[Initialise
data segment]
[Display
MES 1
on video screen
[Get the
Firstc

Bdata

%4

0%H

OFFSET MES_1

g e e s s e

Microprocessors and Interfacing 4-69 Assembly Language Programs

INT 21H } HEX number |

MOV AH, 09H ; | Display

MOV DX, O0FFSET MES_Z2 i MES 2

INT Z21H i on video screen |

LEA D:{,_IHPE i [Get the

MOV AH, OAH i Second

INT 21H - HEX number |

MOV CH,02H ; Initialize buffer counter

LEA BX, INP1 i Get the address of buffer
BRGAIN: INC BX i [Adjust buffer

INC BX i pointer |

AOR DI, DI i Clear pointer

MOV CL, 04 ; Initialize counter for digits
BACK: MOV AL, [BX+DI] ; Get the digit from buffer

CMP AL, 39H ;[Conwvert

JiG HEXT i the ASCII

sSUB AL, 30H H code of

JHME SEIP H the actual number
MEXT: SUBR AL, 37H H and store it in the same
SEIP: MOV [BX+DI) ;AL i position]

INC DI i Increment pointer

DEC CL i Decrement digit counter

JHZ BACEK ¢ If not zero goto BACK

LEXA BX, INPZ : Point to second buffer

CEC CH i Decrement buffer counter

JNZ RGARIN i If nmot zero goto AGAIN

MOV CL, 4 ; Initialize rotation counter

LEA BX, INP1 ¢ Poaint to first buffer

INC BX i [Adjust buffer

INC BX i pointer |

MOV AH, [BX+0] i [Forms the

SAL AH,CL ; packed BCD

AND AH, OF0OH i Higher

MOV AL, [BX+1] : Byte |

OR AH,AL

MOV AL, [BX+2] i [Forms the

SAL AL,CL i packed BCD

AND AL, OFOH] Lower

MOV DH, [BX+3] : byte |

QR AL, DH

MOV RESULT, AX i Save packed word as a RESULT

MOV CL, 4 ; Initialize rotation counter

LER BX, INFPZ ; Point to second buffer

INC BX ¢ I Adjust buffer

INC BX } pointer]

MOV RH, [BX+0D] ; [Forms the

SAL AH,CL ;: packed BCD

AHD AH, OFOH i Higher

MOV AL, [BX+1] H byte]

OFE AH, AL
MOV AL, [BX+2] ¢ [Forms the

~ Migroprocessars and Interfacing 4-70 Assembly Languace Programs

SAL AL;CL { packed BCD

AND AL, OFOH H lower

MOV DH, [BX+3] i byte]

OR AL,DH

CHF AX, RESULT i Compare two packed words

JHNC NEXTI

MOV DIVISOR, AX } Assign smaller word as a

MOV CX,RESULT ¢ DIVISOR and

MOV DIVIDEND, CX { greater word as a DIVIDEND

JMP S5KIF1

NEXTL: MOV DIVIDEND, AX { Assign greater word as a
MOV CX,RESULT ; DIVIDEND and
MOV DIVISOR,CX i smaller word as a DIVISOR
SKIPl: MOV DX, 0

MOV AX, DINIDENWD

DIV DIVISOR i Perform division

CMP DX, 0 i Check remainder for zero

MOV CX, DIVISOR

Mo DIVISOR, DX i Load remainder as a new
i DIVISOR

MOV DIVIDEND, CX i Load previous DIVISOR as a
r new DIVIDEND

JHZ SKIPLl i If remainder is not zero
i goto SKIPL

MOV AH, 09H : [Display

LEA DX,MES 4 : MES 4

INT 21H : aon wvideo screen |

ADD CL, 30H : [Display the DIVIESOR

MOV DL, CL ¥ when remainder

MCW AH, 02H 3 is zero

INT 21H i i.e. HCF]

MOV AH, 4CH i [Terminate and

INT Z1H H Exit to DOS |

END MAIHN

END

Program 23 : Program to find LCM of two given numbers.
(Softcopy of this program, F26.asm is available at www.vitubooks.com)

There is a one more method to find LCM of two number if HCF is known. We can

fird LOM as follows -

LCM =

[numberl = number 2] + HCFE

This program accepts two four digit numbers from keyboard, finds HCF first and
using above equation it then finds LCM of the two numbers.

Microprocessors and Interfacing

Cmodel
Letack
~data

. code
MAIH:

AGAIN:

BACK:

4-7 Assembly Language Programs
small
100
CR EQU OAH
LF EQU ODH
MES 1 DB CR,LF,"ENTER 4-DIGIT FIRST HEX NO',CR,LF, 3"
MES 2 DB CR,LF,"ENTER 4-DIGIT SECOND HEX NO',CR,LF,"$’
HESFE DB CR,LF,"INPUT IS5 INVALID BCD &°
MES_4 DB CR,LF,’THE HCF IS N
MULTI DW 1,10,100,1000
RESULT OW {00}
DIVISOR DW {00}
CIVIDEND DW {00)
TH®] DE 05
DE 00
DE 05 DUP(0)
IHEZ nDeE 0%
DE QO
DB 05 DUP(O)
MOV BY¥,ddata 7 [Initialise
MOV DS, RX ; data segment]
MOV AH, O9H i | Display
MOV DX,OFFSET MES_1 ; MES 1
INT 21H ; on video screen]
LEA DX, INP1 i [Get the
MOV AH, OAH ; First
INT 21H f HEX number |
MOV BH,09H ; [Display
MOV DX,0FFSET MES_2 ; MES 2
INT 21H i on video screen]
LEA DX, INPZ i [Get the
MOV AH, 0AH } Second
INT Z1H H HEX number |
MOV CH; 02H i Initialize buffer counter
LEA BX, INPL i Get the buffer pointer
THO BY ; | Adjust buffer
INC BX ; pointer |
XOr DI,DI ; Clear pointer
MOV CL,D4 ; Initialize counter for digits
MOV AL, [BX4DI] ¢ Get the digit from buffer
CMF AL, 39H i [Convert
JG HEXT ; the ASCII

Microprocessors and Interfacing 4-72 Assembly Language Programs
SUB AL, 30H i code
JHMP SKIP J the actual number
HWEXT: SUB AL,37H : and store it in the same
SKEIF: MOV [BX+DI], AL H position]
INC DI ; Increment pointer
DEC CL i Decrement digit counter
JHZ BACK § If not zeroc goto BACK
LEA BX, INFZ i Point to -second buffer
DEC CH ; Decrement buffer counter
JNZ AGAIN ; If not zero goto AGAIN
MOV CL, 4 ¢ Initialize rotation counter
LEA BX; INFl § Point to first buffer
INC BX ¢ | Adjust buffer
INC BX H pointer |]
MOV AH, [BX+0] i | Forms the
SAL AH,CL H packed BCD
AND AH,OFOH i Higher
MOV AL, [BX+1] i Byte]
OR AH, AL ‘i
MOV AL, [BX+2] ¢ [Forms the
SAL AL;CL i packed BCD
AND AL; OFOH ! Lower
MOV DH, [BX+3] i byte 1
OR AL,DH
MOV RESULT, AX i Save the packed word as a
; RESULT
MOV CL, 4 i Imitialize rotation counter
LEA BX, INF2Z ; Point to second buffer
INC BX i [Adjust buffer
INC BX i pointer |
MOV AH, [BX+0] ¢ [Forms the
SAL AH,CL H packed BCD
AND AH,OFOH F Higher
MOV AL, [BX+1) : byte]
OR AH,AL
MOV AL, [BX+Z2] i [Formz the
AL AL,CL i packed BCD
AND AL, 0F0H : lower
MOV DH, [BX+3) : byte]
OR AL, DH
MOV RESULT1,AX ; BSave second pack word as
; a RESULTZ2
CHEP AX,RESULT i Compare two packed words

NEXT1

Microprocessors and Interfacing

4-T3

Assembly Language Programs

MEXT1:

SKIFl:

; Humberl = Humber? =

SKIPZ:
NEXTZ2:

JHE

MoV
LEA
INT

ADD
JMP
ADD
MOV
MOV
INT

AHD
CMP

DIVISOR, AX
CX, RESULT
DIVIDEND, CX
SKIP1

DIVIDEND, AX
C¥, RESULT
DIVISOR, CX
DX, 0

A¥, DIVIDEND
DIVISOR

DX, 0

CX, DIVISOR
DIVISOR, DX

DIVIDEND, CX

SKIF1

AH, D9H

e me

DX,0FFSET MES 3 ;

21H

HCF,CX
DX, 0
AX, RESULT
RESULT1
HCF
CL, 4
BX, AX
BH, OFOH
AH, CL
AH, OSH
SKIP2
AH, 30H
NEXTZ
AH, 3TH
DL, AH
AH, OZH
21H

AKX, BX
RH, OFH
BH, O9H
SKIP3

HCF = LCM

Bssign smaller word as a
DIVISOR and
greater word as a DIVIDEHD

Assign greater word as a
DIVIDEND and
smaller word as a DIVISOR

Perform diwvision
Check remainder for zero

Load remainder as a new
DIVISOR
Load previous DIVISOR as a
new DIVIDEND
If remainder
goto 3SKIPL
[Display
MES 3
on wideo screen |
. LCM =(Numberl = HNumber2)/HCF

is not zero

Get the first number
Multiply numberl and numberz
Divide multiplication by HCFE
Initialize rotation counter
Save the quotient (LCM)
[Display the LCM

on the wvideo screen]

Microprocessors and Interfacing 4-74 Assembly Language Programs

ADD AH, 30H
SJHME MNEXT3
SEIP3: ADD AH,; 3TH
HEXT3: MOV DL, AH
MOV BH,0ZH
INT 21H
MOV AX,BX
AND AL, OFDH
SAR AL,CL
CHEP AL, D9H
JHC SKEIP4
ADD AL, 30H
JHMP HEXTY
SKIP4: ADD AL, 37H
MEXT4 : MOV DL, AL
MOV AH,02H
INT 21H
MOV AN, BX
AND AL, OFH
CMP AL, D9H
JHC SEIPS
ADD AL, 30H
JHMF HEXTS
SEIPS: ADD AL;3TH
NEXTS: MOW DL, AL
MOV AH,02H
INT 21H
MOV AH, 4CH ¢ [Terminate and
INT 21H i Exit to DOS]
EMD MAIM

Qaaa

8086 System Configuration

5.1 Introduction

Unlike 8085, 8086 and 8088 can be operated in two modes @ Minimum mode and
Maximum mode. In this chapter we study the topics related to Minimum mode and
Maximum mode operation of 8086, Topics include clock generation, bus buffering, bus
Iati;hing, t:irninEs, mirndmum maode :1-}14.-:ratinn and maximum mode t:perati-_:-n. Let us begin
with signal description of 8086,

5.2 Signal Description of 8086

In order to implement many situations in the microcomputer system the 3086 and 8088
has been designed to work in two operating modes :

1. Minimum Mode
2, Maximum Maode

The minimum mode is used for a small systems with a single processor and
maximum mode is for medium size o large svstems, which often include two or more
processors, Fig. 5.1 shows the pin diagram of 8086 and 8088 in minimum as well as
maximum mode. As a close comparison reveals, there is no much difference bebween two
microprocessors - both are packaged in 40-pin dual-in-line package (DIPs). As mentioned
in section 2.1, the B0S6 is a 16-bit microprocessor with a 16-bit data bus, and the B0SS is a
16-bit microprocessor with an 8-bit data bus. The pin-out shows, the 3086 has pin
connections ADg-AD,,, and the B088 has pin connections ADg-AD,. There is one more
minor difference in one of the control signals. The 8086 has an M,/ 1O pin, and the B088 has
an u’JfEEm. The only hardware diffﬂrﬁnf‘(‘ipmﬂﬁ on pin 34 of both chips : on the 8086
it is a BHE/S; pin, while on the B0S88 it is a 55, pin.

The BDS6 signals can be categorised in three groups.
Signals having common functions in both minimum and maximum modes.
* Signals having special functions for minimum mode.

* Signals having special functions for maximum mode.

5-1)

Microprocessors and Interfacing 5-2 8086 System Configuration

mode) Froae)
aan [~ a0 [T Vee ano [~ an 7] vee
a0,] : 36 [] aDy, ay [2 36] Ay
#yy O 3 36] AwS, a3 38] A48
any] ¢ a7] Aps, A] o S
an,,] s 36] A.yS, Ay O 8 a6 L] A,
any [8 35 [A5y A O 8 35] Ay
an, 17 34 [] BHEs, Ay 7 34] B8, (aGH)
an, 1 s 33] manibix - s] 8 m:umm
an, [@ 12 [] @D mads] an, 1 & wz[] o !-.m:
an, [10 BOUE 3] ROUGT, (WoLD) ang [oo HoaL 3 [] HOLD (RGAGT,)
an,] 1 cRu a0] ROAGT, (DA an, [n e a0 O] mioa (RGGT)
a0, 1 =2] locK WR) an, [=2] WR (LOCK)
any [13 @] & (M) any [13 wm]wom &
ao, [14 i [&, {DTIR) sy [v [Jot® &y
an, 1 15 26] &, (DEM} an, [s =[] oEN &y
an, [s 28 [] os, {ALE) ag, [] e osy
wa] 7 24 [] s, {INTA] wa [o7 24 [T] INTA (05}
TR [8 23 [] TEST wtr [& 23 [] TEST
ok [19 22 [meaoy cu [2z [] reaoy
anp [20 21 [] RESET N 21 [] RESET

(8] Pin diagram of 8086 (b} Pin diagram of 8088
Fig. 5.1

5.2.1 Signals with Common Functions in Both Modes

1.

3.

AD,-AD; : Acts as address bus during the first part of machine cycle and data bus
for the remaining part of the machine cycle.

AyfS-AfS; ¢ During the first part of machine cycle these are used to output
upper 4-bits of address. During remaining part of the machine cycle these are used
to output status, which indicates the type of operation to be performed in that
cycle. 55 and 5, indicate the segment register being used as follows :

5, Sy Register
0 1) ES

0 1 55

1 0 CS or none
1 1 D5

5; gives the current setting of the interrupt flag (IF) and 5, is always zero.

BHE/S, : BHE (Bus High Enable) : Low on this pin during first part of the
machine cycle, indicates that at least one byte of the current transfer is to be made

Microprocessors and Interfacing 5-3 8086 System Configuration

10,

11.

on higher order byte AD,s-ADy; otherwise the transfer is made on lower order byte
AD.-AD,,

BHE | A, Data accesses

o 0 Waord

o 1 Upper byte from odd address
1 0 Lower byle from evan address
1 1 Mone

Status 5, is output during the later part of the machine cycle, but, presently, 5; has
not been assigned a meaning.

NMI : It is a positive edge triggered nonmaskable interrupt request.

INTR : It is a level triggered maskable interrupt request. It is sampled during the
last clock cycle of each instruction to determine if the processor should enter into
an interrupt service routine.

CLK : 8086 requires clock signal (with 33 % duty cycle) from some external, crystal

controlled generator to synchronize internal operations. Clock frequency depends
on the version of B086A.

Processor Required clock signal
808 5 MHZ
8088-2 B MHZ
B086-1 10 MHZ

RESET : It clears PSW, IP, D5, 55, ES, and the instruction queue. [t then sets C5 to
FFFFH. This signal must be high for at least 4 clock cycles. When RESET is
removed, 8086 will fetch its next instruction from physical address FFFFOH.

READY : If this signal is low the B086 enters into wait state. This signal is used
primarily to synchronize slower peripherals with the microprocessor.

TEST (Input) : This signal is only used by the WAIT instruction. The B086 enters
into a wait state after execution of the WAIT instruction until a LOW signal on the

TEST pin. TEST signal is synchronized internally during each clock cvele on the
leading edge of the clock cycle.

RD (Output) : RD is low whenever the 8086 is reading data from memory or an
[/0 device.

MN /MX (Input) : The 8086 can be configured in either minimum mode or
maximum mode using this pin. This pin is tied high for minimum mode.

Microprocessors and Interfacing 5-4 B0BE System Configuration

5.2.2 Signal Definitions (24 to 31) for Minimum Mode

INTA (Interrupt Acknowledge) Output : This indicates recognition of an interrupt
request. [t consists of two negative going pulses in two consecutive bus cycles. The first
pulse informs t' » interface that its request has been recognized and upon receipt of the
second pulse, the interface is to send the interrupt type to the processor over the data bus.

ALE (Address Latch Enable) Output : This signal is provided by 8086 to demultiplex
th'.." .|'!|I.D:'|'."!||.D|5_ into "al'l':l"q'].s ﬂ"‘d D“‘D"' uﬁing EHtE‘I'I'Ial lﬂft}'ll"ﬁ

DEN {Data Enable) Output : This signal informs the transceivers that the CPU is ready
o send or receive data.

DTIR (Data transmit/Receive) Output : This signal is used to control data flow
direction. High on this pin indicates that the 8086 is transmitting the data and low
indicates that the 8086 is receiving the data.

MAO Output : It is used to distinguish memory data transfer, (M/IO = HIGH) and 1/O
data transfer (M/10 = LOW).

WR : Write Output : WR is low whenever the 8086 is writing data into memory or an
1/ device.

HOLD input, HLDA Output : A HIGH on HOLD pin indicates that another master
(DMA) is requesting to take over the system bus. On receiving HOLD signal processor
outputs HLDA signal HIGH as an acknowledgment. At the same time, processor tristates
the system bus. A low on HOLD gives the system bus control back to the processor.
Processor then outpuls low signal on HLDA.

5.2.3 Signal Definitions (24 to 31) for Maximum Mode

1. Q5; QS; (output) : These two output signals reflect the status of the instruction
quene, This status indicates the activity in the queue during the previous clock

cycle.
Qs, QS, Status
0 0 Mo operation (gueue s idla)
0 i First byte of an opcode
1 0 Qsaus is emply
1 i Subsaquent byte of an opcode

2. §,, 5, 5, loutput) : These three status signals indicate the type of transfer to be
take place during the current bus cycle.

Microprocessors and Interfacing 5-5 8086 System Configuration
s, | s | 5 Machire cycle s, | 8 | 5 Machine cycle
0 0 Interrupt Acknowledge 1 0 0 Instruction fetch
0 1 O Read 1 1 Memary read
0 1 0 1O Write 1 1 0 Memary write
0 1 1 Hait 1 1 1 Inactive-Passive

3. LOCK : This signal indicates that an instruction with a LOCK prefix is being
executed and the bus is not to be used by another processor,

5. RQ/GT, and RQICT, :

In the maximum mode, HOLD and HLDA pins are

replaced by RQ (Bus request)/GT, (Bus Grant), and RQ/GT, signals. By using bus
request signal another master can request for the system bus and processor
communicate that the request is granted to the requesting master by using bus
grant signal. Both signals are similar except the RQ/GT, has higher priority than
RQ/CT,.

5.3 Physical Memory Organisation

e 0, 1[0 010
(DyDys} 15 B 7 0
BHE — Ay —
—aCs —aCs
Bank 1 Bank 0
(512 bytes) (512 bytes)
Address
(Odd addressed memory bank) (Even addressed memaory bank)

Fig. 5.2 Memory interfacing

Most of the memory
ICs are byle oriented ie.
each memory location
can store only one byle
of data. The 8086 is a
i6-bit microprocessor, it
can transfer 16-bit data.
50 in addibion to byte,
word (16-bit) has to be
stored in the memory.
This is stored by using
two consecutive memory
locations, one for least
significant byte and

other for most significant byte. The address of word is the address of least significant byte.
To implement this, the entire memory is divided into two memory banks : bank; and
bank,. Fig. 52 shows the interfacing diagram to these memory banks. Bank, is selected
only when A, is zero and Bank, is selected only when BHE is zero. A, is zero for all even
addresses. S0 Bank, 15 usually referred as even addressed memory bank. BHE is used 1o
access higher order memory bank, referred to as odd addressed memory bank.

Together BHE and A, tell the interface how the data appears on bus, Four possible
combinations are shown in the table.

Microprocessors and Interfacing 5-6 8086 System Configuration
No. Operation BHE J Ay Data Lines Used

1. Read/Write a byte at an even address 1 0 0y -DOg

2 ReadWrile a byte at an odd address 0 1 Dys - Dg

3 Read/Write a word at an even address 0 0 Dyg - Oy

4. | ReadWrite a word at an odd address | © 1 Dyg-0yp in first operation byte
from odd bank is fransferred.

1 0 Dy-0y in second operation

byte from even bank is
iransfered,

Note : To access odd addressed word two bus cycles are required.

Every microprocessor based system has a memory system. Almost all systems contain
two basic types of memory, read-only memory (ROM) and random access memory (RAM)
or read/write memory. Read only memory contains system software and permanent
system data such as lookup tables, while Random Access Memory contains temporary data
and application software. ROMs/PROMs/EPROMs are mapped to cover the CPU's reset
address, since these are non-volatile. When the 8086 is reset, the next instruction is fetched
from memory location FFFFOH. So in the B086 systems, the location FFFFOH must be ROM
location.,

The Fig. 53 shows memory map for B086. Certain locations in 1 Mbyte memory are
reserved and some are dedicated for specific CPU operations. Locations from FFFFOH to

Thibytas
A
T 512 K byted
15 :Idml-!.l 5 yled
FFFFFH| ; FFFFEH}
FFFEDH| i peppcH) ol
FFFFaH| i FEFFAM
FFFFaH 4 FFFFAH 6 Ervias
FFFFTH i FEFFBH | e oted
FFFFSH H FFFFdH
FFFFaH| ! FFFFZH
FEFE1H|] FFFFOH
J‘ H
i =
]
]
COIFFH : O0IFEH -
(I3FDH i QOFFCH
]
E]
T i T
]
[~ BOOTFH i OCOTEH 1
OOOTDH i OOETEH
¥ ¢ Reserved Inbesrupt
% i e » wecior
Il 1!m
J DO015H [pOD1dM -
128 bytes %, 0O013H i 00012H
DO0TIH ; o0 teH
T i e . Dachcated
L]
T | I [O00EH
1 “ pEnoiH| i DO000H v

Ol Banik

Even Bank

Fig. 5.3 Memory map for 8086

Microprocessors and Interfacing 5-T 8086 System Configuration

FFFF5H are dedicated to the initialisation procedure of the 8086, while locations FFFF6H to
FFFFBH are dedicated to the initialisation procedure of the 8089 input/output processor.
Locations 00000H to 00013H are dedicated to store the vector addresses of the dedicated
interrupts. The dedicated locations are used for processing of specific system iniHalisation,
interrupt and reset function.

Intel has also reserved several locations for future hardware and software products.
Locations from 00014H to 0007FH and locations from FFFFCH to FFFFFH are reserved
locations. The locations from 00000H to 003FFH are used for interrupt vector table (IVT).
The interrupt vector table provides the starting location/address of the interrupt service
routine for the interrupt supported by 8086. The detail description of interrupt vector table
is given in sections 8.2 and 8.3.

5.4 /O Addressing Capability

The BOB6 can generate 16-bit of 1/0 address. Thus it can address upto 64 kbyte 1/0
locations or 32 K word 1/0 locations. The 16-bit /0 address appears on A to A;; address
lines; A, to Ay, lines are at logic U during the 1/0 operations. The 16-bit DX register is
used as 16-bit 1/0 address pointer to address upto 84 K devices in in-direct addressing
mode. The 1/0 instructions with direct addressing mode can directly address one or two
of the 256 1/0 byte locations in page 0 of the 1/0 address space. See Fig. 54.

FFFFH ™
FFFEH

™ 0OFFH B4 K

DOFEH 1D space
Resaer/ad

00FEH
DOFTH

Faguﬂ{

= =

D001H
L. D000H d

Fig. 5.4 /O map for 8086

Microprocessors and Interfacing 5-8 8086 System Configuration

I/O porte are addressed in the same manner as memory locations. Even addressed
bytes are transferred on the D--Dy bus lines and odd addressed bytes on Dys-Dy Care
must be taken to assure that each regisler within an 8-bit peripheral located on the lower
portion of the bus be addressed as even. In the 1/0 space, Intel has reserved (0FBH to
MIFF locations.

5.5 General 8086 System Bus Structure and Operation

The 8086 has a common address and data bus. The address and data are time
multiplexed, ie. address and data appear on common bus at different time intervals. Thus
bus is commonly known as multiplexed address and data bus. The multiplexed address
and data bus provides the most efficient use of pins on the processor while permitting the
use of a standard 40-lead package. This multiplexed address and data bus has to be
demultiplexed externally with the use of latches and the ALE signal provided by B086, as
shown in Fig. 5.5.

ALE —— 5TH

Address

<::> Latch bus
AD, s (2)

. Data
iransceiver bausg
(2)
DEN—={0E
DTIR—={T —

Fig. 5.5 Demultiplexing of address and data bus

Each processor bus cycle consists of at least four clock cycles, These are referred to as
T, Ty Ty and T, Refer Fig. 5.5 During T,, processor sends address on the address bus
and activates ALE signal. The ALE signal is used activate latches and thus to latch the
address. The data transfer occurs on the bus during T, and T,. The time interval T, is used
primarily for changing the direction of the bus during read operations, Ready signal is
sampled during T, The slower peripheral devices use this signal to indicate that the
device is not ready to send the desired data within specified time. In the event that a
"NOT Ready” indicabion is given by the slower peripheral deviee, "WAIT' states (T) are
inserted between T, and Ty W give enough access time for the slower peripheral device.

Microprocessors and Interfacing 5-9 8086 System Configuration

Each WAIT state is of the same duration as a clock cycle. During a WAIT state, the signals
on the buses remain the same as they were at the start of the WAIT state. If the Ready
input is made high during wait state, then after WAIT state the 8086 will go on with the
regular T, of the machine cycle. However, if the 8086 Ready input is still low at the end of
a WAIT state, then the 8086 will insert another WAIT state. The 8086 will continue
inserting WAIT states until the Ready input is made high again.

The status bits S, S, and S, are used, in maximum mode, by the bus controller to
jdenl'ify the type of bus transaction according to the table given below.

E, E, Eﬂ. Machine cycle Ez E, §. Machine cycle
0 0 0 Interrupt Acknowledge 1 0] Instruction feich
0 0 1 O Read 1 0 1 Memory read
0 1 0 IO Write 1 1 0 Memory write
0 1 1 Hait 1 1 1 Inactive-Passive

Status bits 5; through 5; are multiplexed with high-order address bits and the BHE
signal. These bits are also demultiplexed using latch and the ALE signal during T,
Therefore, the status bits S, through S, are valid during T, through T,. Status bils 5; and

S,; indicate which segment register was used for this bus cycle in forming the address,
according to the following Table.

S, S5 Characteristics
o 0 Alternate Data (extra segment)
0 1 Stack

1 0 Code or None

1 1 Data

Out of remaining status bits, S; is a reflection of the interrupt enable bit of the flag
register, 5, is always 0 and S; is a spare status bit.
If a system is large enough to need data bus buffers, then the 8086 DT/R signal

connected to these buffers will set them for input during a read operation or set them for
output during a.write operation. The 8086 DEN signal will enable the buffers at the
appropriate time in the machine cycle, as shown in the Fig. 5.6.

Microprocessors and Interfacing 5-10 BOB6 System Configuration
Tll

Mamory read cycle Meamaory write cycha
‘ Ty | Tz | T IT'H.i.ITi ‘T- | T | Ty IT'HAITl T.tl

Goes inactiva in the siate
just prios to T,

ne % /o
A ////////| N\ il —
CE R 09 SN 09 SN

ADDR rusto)-{P YO o) ----{Rsho) Data out (0;5-0g) }U:

n,ﬁ‘L;_l

Ready Ready

wo WL/ WL/

Wiait Wait

DTIR '_\ / 1II-_

CLKE

DEM

I.hmug:mu

\ /
Fig. 5.6 Basic system timing

5.6 Minimum Hqﬁa 8086 System and Timings

5.6.1 Minimum Mode Configuration
Latching

Fig- 5.7 shows the typical minimum mode configuration. As shown in the figure,
ADgADys, Ay/Sy-A/S, and BHE/S, signals are multiplexed. These signals are
demultiplexed by external latches and ALE signal generated by the processor. This is
accomplished by using three latch ICs (Intel 8282/8283), two of them are required for a
16-bit address and three are needed if a full 20-bit address is used. In case of 8088, only
two external latches are required. One for demultiplexing ADy-AD, and other for
demultiplexing A,./5; and AD,/S, Fig. 58 shows the internal block diagram of
8242 /8283 latches. The 8282 provides noninverting outputs while the 8283 version inverts
the input data. In addition to their demultiplexing function, these chips also buffer the
address lines, providing increased output criving capability. The output low 'evel is
specified as 045 V. maximum with a sink cusrent of 32 mA maximum. The high level is
specified as 2.4 V minimum while supplying a 5 mA maximum high level load current.

WR

Y8 F

Microprocessors and Interfacing 5-11 8086 System Configuration
*Veo —
WANIAX, i |
CLK
R B2844 ALE 3TE .
Clock READY s BHE
Generator RESET Nisl
RES P
GI ROV 18716
= _| AD gAYy
P
WaIT
| srare | 8086 CPU
| GeEneratoR |
l— —— — -n-l
DEN
OTR T [
(Optional for increased
Data bus drive)
WD -
WR -
0 Caontrol
HOLD
HLOA - Bus
INTR
MTA -
Fig. 5.7 Typical minimum mode configuration
B282 B283
L} = |
ot [(2] o1 ,—-—v—@
lllllllllllllllllllllllllll I'Il_. _-
s
H“* D3

LG

00,06
’
T

i

| ey

I

TrrrrEEEr e ey

OE

Fig. 5.8 Internal diagram of 8282 and 8283

l.l
I..l

D16

[]

oy

najay

Microprocessors and Interfacing 5-12 8086 System Configuration

ADy, Ay By Buffering

AD, Ay By |— If a system includes several
:E :i :; | Data Bu interfaces then to increase current
ADy = Ay : By — :’ - sourcing /sinking capacities it s
:gz % 8 g: = necessary “to use drivers and
Al a, & g l—J receivers (transceiver) for data bus
o] I i also. The Intel 8286 device is used to
oTA T implement the transceiver block
BOBE shown in Fig. 5.7 The 8286 contains
ADg Ay By I 16 tristate elements, eight receivers,
‘;“n A B and eight drivers. Therefore two
et ASEE-{ > 8286s are required to service 16 data
8015 A 8 mf— DB e of 8086 Fig. 59 shows the

:DD: E : E — detailed imu‘mctinnﬁ of 8286,
"By x Br DT/R signal is connected to the
I 3 T input, which controls the direction
T of the data flow. When this signal is
low, receivers are enabled, so that

Fig. 5.9 Connection details of 8286 8086 can read data from memory or

input device. To write data into

memory or output device, the B08&'s DT/R signal goes high. Due to this drivers are

enabled to transfer data from 8086 to the memory or the output device. Al the tme of

data transfer, to enable output of transceiver its OE should be low. This is accomplished

by connecting DEN signal of 8086 to the OE pin of 8286, since DEN signal goes low when
CPU is ready to send or receive data.

Clock generator

The third component, other than the processor that appears in Fig. 5.7 is an 8284 clock
generator. The 8284 clock generator does the following functions :

* Clock generation

» RESET synchronization

= READY sﬁthmnizalim

Peripheral clock generation.

The Fig: 5.10 shows the internal logic diagram of 8284.

The top half of the logic diagram represents the clock and reset synchronization section
of the 8284 clock generator. As shown in the logic diagram, the crystal oscillator has two

inpuls : X, and X, If a crystal is attached to X; and X, the oscillator generates a
square-wave signal at the same frequency &5 the crystal. The output of oscillator s fed to
an AND gate and also o an inverter buffer that provides the oscillator outpul sgnal. The
F/C signal selects one of the oscillator inputs. When F/C input is 1, the EFI input

Microprocessors and Interfacing 5-13 8086 System Configuration

RES > ;
= G} reseT

CLK
? I So——= 05C
:>— 3 4t 2 p=rox

]

SYMNC SYMNC

EFI
CSYNC

AEN,

—_— CLK l_‘ CLK
D—n Q== READY
AEN, 'I>‘_| FF1 FF

V

r-

j
Ty

Fig. 5.10 The internal logic diagram of 8284

determines the frequency; otherwise oscillator determines the frequency. When EFI input is
used, CSYNC signal is used for multiple processor system synchronization. If the internal
crystal oscillator is used, CSYNC signal is grounded. In both the cases the output clock
frequency is one third of the input frequency. The CLK signal is also buffered before it
leaves the clock generator. As shown in the Fig. 5.10, the output of the divide-by-3 counter
generates the timing for ready synchronization, a signal for another counter (divide-by-2),
and the CLK signal to the B08&/B0BE microprocessors. The two cascaded counters
(divide-by-3 and divide-by-2) provide the divide-by-6 output at PCLK, which can be used
to provide clock input for peripherals,. The address enable pins, AEN, and AEN, are
provided to qualify the bus ready signals, RI)Y, and RDY,, respectively.

The reset circuit of B284 consists of a schmitt trigger buffer and a single D Aip-flop
circuit. The D flip-flop ensures that the timing requirements of the 8086/80B8 RESET input
are met. This circuit applies the RESET signal to the microprocessor on the negative edge
(1 to O transition) of each clock. The B08&/B0BS microprocessors sample RESET at the
positive edge (0 to 1 transition) of the clocks; therefore, this circuit meets the timing
requirements of the 8086,/8088.

Microprocessors and Interfacing 5-14 8086 System Configuration

The Fig. 511 shows the circuit connection for 8284 clock generator. The RC circuit
provides a logic 0 to the RES input pin when power is first applied to the system. After a
short time, the RES input becomes a logic 1 because the capacitor charges toward + 5.0 V
through the register. A push button switch allows the microprocessor to be reset by the

operator.

X, Ky
—= EFI CLE =] CLK
BT REBET RESET
MEN,
AEN, READY ={ READY
CEYMNC
w o=
B284 BOEG
10 : Clock Generator or
D BOBS
F o J_ & E
= I 10 uF
e PCLK =
RDY; RDY,

Fig. 5.11 Interfacing of 8284 clock generator with 8086 or 8088
Other signals

The status on the M/IO, RD, and WR lines decides the type of data transfer, as listed
in the Table 5.1.

MIO | RD | WR Operation
0 0 1 VO read
i) 1 0 VO write
1 o 1 Memory read
1 1 0 Memory write

Table 5.1

HOLD and HLDA signals are used to interface other bus masters like DMA controller.
Interrupt request (INTR) and interrupt acknowledge (INTA) are used to extend the
interrupt handling capacity of the B086 with the help of interrupt controller.

| IETE 27
Microprocessors and Interfacing 5-15 B086 System Configuration

5.6.2 Minimum Mode B0BE System

The Fig. 512 shows the typical minimum mode 8086 system. Here, interfacing of
memory and 1/0 devices are shown with the basic minimum mode B0B6 configuration.

CEpE -?! B =2

Fig. 5.12 Minimum mode 8086 system

Microprocessors and Interfacing 5-16 B0B6 System Configuration

For interfacing memory module to 8086, it is necessary to have odd and even memaory
banks. This is implemented by using two EPROMs and two RAMs. Data lines Ds-Dy are
connected to odd bank of EPROM and EAM, and data lines [}-[), are connected to even
bank of EPROM and REAM. Address lines are connected to EPROM and RAM as per their
capacitiecs. RD signal is connected to the output enable (OE) signals of EFROMs and
RAMs. WR signal is connected to WR signal of RAMs. Two separate decoders are used to
generate chip select signals for memory and 1/0 devices. These chip select signals are
logically ORed with either BHE or Ay to generate final chip select signals. For generating
final chip select signals for odd bank decoder outputs are logically ORed with BHE signal.
On the other hand to generate final chip select signals for even bank decoder outputs are

logically ORed with A signal.
The 16-bit 1/0 interface is shown in the Fig. 5.12. RD and WR signals are connected to

P
T

the RD and WR signals of 1/0 device. Data lines D ;-0 are connected to the data lines of
I/O device. The chip select signal for [/O device is generated using separate decoder
whose output is enabled only when M/IO signal is low.

5.6.3 Bus Timings for Minimum Mode

5.6.3.1 Timings for Read and Write Operations

The timing diagrams of input and output transfers for 8086 minimum mode are shown
in the Fig. 5.13 (a) and (b) respectively.

| One Bus Cycle |

TE- ! T_q_
CLK - | S A W

Address, BHE OUT

AypfSg-AqaS3 :}.___(< Status OUT P

and BHE/S,

—_— TAVDV —————

ADs-AD), <\ > < DaaiN >
Address DUT :

ALE s “ ’

WIC > LOW = O READ, HIGH = MEMORY READ >

RD N i; J/

— TRLDV ==

OEN . \ /

Fig. 5.13 (a) Input (read operation)

Microprocessors and Interfacing 5-17 8086 System Configuration

' One Eu:- Erdﬂ i
vt
_/'__! Y W e WY e W

Address, BHE OUT

MefSehieS T LT XK Status OUT) SRR

and BHE/S,

AD 5-ADy {mmj‘)(Data OUT S

ALE # ™ ’

MO > LOW = IO WRITE, HIGH = MEMORY WRITE ¢
o \:—- TWLWH —*—:/
TR

I \ S

Fig. 5.13 (b) Output {write operation)

These are explained in steps.

1.

When processor is ready to initiate the bus cycle, it applies a pulse to ALE during
T,. Before the falling edge of ALE, the address, BHE, M/I0, DEN and DT/R must
be stable i.e. DEN = high and DT/R = 0 for input or DT/R = 1 for output.

At the trailing edge of ALE, ICs 7415373 or 8282 latches the address.

During T, the address signals are disabled and 54-5; are available on
ADy./5-AD /5, and BHE/S,. Also DEN is lowered to enable transceiver.

. In case of input operation, RD is activated during T, and AD, to AD,; go in high

impedance preparing for input.

. If memory or 1/0 interface can perform the transfer immediately; there are no wait

states and data is output on the bus during T,.

After the data is accepted by the processor, RD is raised high at the beginning of
T,
Upon detecting this transition during T,, the memory or 1/0 device will disable its
data signals.

For an output operation, processor applies WR = 0 and then the data on the data
bus during T,.

In T,, WR is raised high and data signals are disabled.

Hidden page

Microprocessors and Interfacing 5-19 B086 System Configuration

W | LCAL BUSES

29
[E BN, e GHO CLx WIS |—— MEMORY READ
ELOCK Uk 3 i
OEMERATOR MANTC. —— MEMORY WRITE
RS FeADY E, g, BRI, = ADVANCED MY
REBET 5 5, e SR |— rores
"'I'_ ROY - aen TR mE b— o wene
L ! CFU o RIOWE —— ADVANCED WO W
WAIT [OCH [+— MG ALE L Aﬂmmm'm
STATE
OGEMERATOR r————— |
5TB
G OF 1 MEGABYTE
mophon AL N ADDAESS BLS
STl W : T BT =
BAE {203 s
—
T
—L}D—- e 16817
BI8E DATE BLIS
— M

Fig. 5.15 Typical maximum mode configuration

Latehas
ST gogs,
IF theare is ro (3)
B2584, this s
BN inyEiier
D—— O Trarsceswr
|‘ B286 (2]
-
CLK ALE
BV Control Control DEN
AEN ; Signal OTiR
- Lagic Generator
Boas/ 108 MCEPDEN
- BUS MIRDC
- contraliar —
p— =\ Confrol
— 5 [Command ous
5 = Signal TOWE
5 1 Status Generalor Py
1 Decodar
E 5
2
INTA I
Pricity niarmupt
controller 82554,

Fig. 5.16 8288 bus controller

Hidden page

waisks 9g0g apow wnwpxew jeadAiy 41 “Biy

8086 System Configuration

1aaal mvd

!
= P B2
F

AMEAR mEaE
!
1 mew ipfo B2
LW 1

|00l mowdl
mag
B peyigla i
3

-21

5

)

i

—N

i

L

sl

Microprocessors and Interfacing

Enr-rm‘

5
{a&iii-i

Sommti-peg

Microprocessors and Interfacing §5-.22 8086 System Configuration
5.7.3 Bus Timings for Maximum Mode

5.7.3.1 Timings for Read and Write Operations

The timing diagrams ot input and output transfers are shown in the Fig. 5.18 (a) and
(b) respectively.

= One Bus Cycle .
| Ty I T I Ty T, |
CLK m b'a.))‘ 'l. f \
o N\ 55 /S neave eo---
reatisiahg == == = . o~ BHE, Ajghyg
T}mﬁs, e LD 4 S-Sy T TN
5 Data IN D50
(AD5-ADl) o
* ALE _/_\ : ;
—TRLODV -—=
* MRDC
or IORC N Vi
o -o o0 \ -
* DEN / N

Fig. 5.18 {a) Input (read operation)

These are explained in steps.

1. Sy S,, 5, are set at the beginning of bus cycle. On detecting the change on passive
state 5y = 5, = 5, = 1, the 8288 bus controller will output a pulse on its ALE and
apply a required signal to its DT/R pin during T,.

2. In T, 8285 will set DEN = 1 thus enabling transceiver. For an input, 8288 it will
activates MRDC or IORC. These signals are activated until T,. For an output, the
AMWC or AIOWC is activated from T,to T, and MWTC or IOWC is activated
from T, to T,

3. The status bits 5, to 5, remain active until Ty, and become passive during T, and
T,

4. If ready input is not activated before T,, wait state will be inserted between T, and
T,

Hidden page

Hidden page

Microprocessors and Interfacing 5-25 B086 System Configuration

Waord length

M bit

8 bit
i Example 2 : If memory has 8192 memory locations, then it has 13 address lines.

The Table 5.2 summarizes the memory capacity and address lines required for memory
interfacing.

Memory Capacity Address Lines Reguired
1 K = 1024 memory locations 10
2 K = 2048 memory locations 11
4 K = 4096 memory locations 12
B K = B192 mamory locations 13
16 K = 16384 memaory locations 14
32 K = 32768 memory locations 15
B4 K = B5536 memory locations 16
Table 5.2

As shown in the Fig. 520 (a) memory chip has 11 address lines Ag-A;, one chip select
(CS), and two control lines, read (RD) to enable output buffer and write (WR) to enable the
input buffer. The internal decoder is used to decode the address lines. Fig. 5.20 (b) shows
the logic diagram of a typical EPROM (Erasable Programmable Read-Only Memory) with
4096 (4 K) regiﬁt&-r:i. It has 12 address lines FLU,-AH, e u:hip select -[II:TS]J one Read control
signal. Since EPROM is a read only memory, it does not require the (WR) signal.

5.9 Basic Concepts in Memory Interfacing

For interfacing memory devices to microprocessor 8086 following important points are
bo be kept in mind.

1. Microprocessor 8086 can access 1 Mbytes memory since address bus is 20-bit. But it
is not always necessary to use full 1 Mbytes address space. The total memory size
depends upon the application.

2 Generally EFROM (or EPROMSs) is used as a program memory and RAM for
RAMs) as a data memory. When both, EPROM and RAM are used, the total
address space 1Mbytes is shared by them.

3. The individual capacities of program memory and data memory depend on the
application.

4. It is pot always necessary W seleet | FPROM and 1 RAM. We can hunve mialple
EPROMs and multiple RAMs as per the requirement of application.

Hidden page

Microprocessors and Interfacing 5-27 8086 System Configuration

memory interface with absolute decoding. Two 8 K EPROMSs (2764) are used to provide
even and odd memory banks. Control signals BHE and A, are used to enable outputs of
odd and even memory banks respectively. As each memory chip has 8 K memory
locations, thirteen address lines are required to address each locations, independently. All
remaining address lines are used to generate an unique chip select signal. This addressing
technique is normally used in large memory systems.

2) Linear Decoding :

In small systems, hardware for the decoding logic can be eliminated by using only
required number of addressing lines (not all). Other lines are simply ignored. This
technique is referred as linear decoding or partial decoding. Fig 5.22 shows the addressing
of 16 K RAM (6264) with linear decoding. Control signals BHE and Ay are used to enable
odd and even memory banks, respectively. The address line Ay is used to select the RAM
chips. When A, is low, chip is selected, otherwise it is disabled. The status of A, to A
does not affect the chip selection logic. This gives you multiple addresses (shadow

addresses). This technique reduces the cost of decuding circuit, but it has drawback of
multiple addresses.

<— CATA,
BUS
oo o1

o7 Do D, D,
""J:D Az Ma_n] A
== _| }04 ol I 6264 S 6264
MAD R _—
. "D | — — wo | _
RD o RD — RD
L —— RAM RAM
BHE — I {8 K] Ag _— 8Kl
_ [~ FWR | — _ R | —
W o WH R —>—u WH
L~ . - -
Cs Cs
L T

Fig. 5.22 Linear decoding
3) Block Decoding :

In a microcomputer system the memory array is often consists of several blocks of
memory chips. Each block of memory requires decoding circuit. To avoid separate
decoding for each memory block special decoder IC is used to generate chip select signal
for each block. Fig. 5.23 shows the block decoding technique using 74138, 3:8 decoder.

Microprocessors and Interfacing 5-28 8086 System Configuration

% T__ | Dug | | Oy Oy || Bs DII{LDI D'UD:
— O, O, o, O,
= I L l.&:] Ay "‘-J::I Ay :bl Ay :::] Al2
o] & | M A % Ay &0
_— i T R p— ITE4 r— B84 - 264
HAD EPAC] || R0 Epmn | RO 4 Ak LRD J — RAM
4 T 4 “u B k) s R s E T
Ty . e |
T iR
[[] []
T —

33

Fig. 523 Block decoding

5.10 Interfacing Examples

mmp Example 1 : Design an 8086 based system with the following specifications.
i) BOSE in muinimum mode.
i) 64 KByte EPROM

i) vd KBute KRAM
Dirme the compliete schematic of the design indicating address muap.

Solution : The B086 is a 16 bit microprocessor. It can access 16 bit data simultaneously.
For interfacing memory module to 8086 CPU, it is necessary to have odd and even
memory banks. This can be achieved by using two 32 Kbyte EPROMs and two 32 byte
EAMs, one for odd bank and another for even bank.

As 32 Kbyte RAM and EPROM need 15 address lines, A, to Ay lines are used. A; and
BHE are used to select even and odd memory banks respectively. Fig. 5.24 shows the
interface boebween 3086 and two memory chips.

8086 System Configuration

5-29

i

apow WNWiuiWw u) 9808 YiMm WOHEI M #9 Pue WyH M v9 Bupepaiu) vz's By

BELETRL

(i) eERY

aw "y ‘gfg 30

53
(v} 95229

L e i e

82
(NOET) 95ELE

Plgly 499 30

ik

g3
(WOMAT) B52LE

n_..a.r_._-_. _n_.ﬁTI.nr H

P

£

£

wudomE

Microprocessors and Interfacing

Microprocessors and Interfacing 5-30 8086 System Configuration

Memory Map :

BHE A Auw Aur Aw|Ais Au Ay Ac|As A A AdfAr Ay As Al|As Az Ay As| Address | Memory
111 1 1|1 00 0l0 0 00/00O0O[0 0 O OfFDOOOH Even
1 T 1 1 171 1 1 i T 1 1 1({1 1+ 1 1)1 1 1 0O |FFFFFH EFPROM1
o|lo 1 1 1/1 0 0 0of0o 0 0 0|0 0O O[O0 0O O O/|FO0OIH Oad
a a 1 1 11 1 1 131 1 1 4(4 1 1 111 1 1 1 |FFFFHH EPROMZ
1|1t 00 11 0o 0 0|0 O O O|D OO O|0 O O O/|30000H Even
i 11 @ a9 11 1 1 11 1 1 1(1 1+ 1 101 1 1 0 |3FFFEH RAar
o |lo oo 1/1 0 0 0f{0 0 0 0l0 0O O[O0 O O 1 |3000H Odd
o Jo o 0 11 1 1 41 1 1 4|1 11 1§11 1 1 |IFFFFH RAM2

mmp Example 2 @ Design an 8086 based system with the following specifications.

i) 8086 m maximum mode i) 64 KByte EPROM i) 64 KByle RAM

Draw the complete schematic of the design indicating address map.

Solution : The 8086 is a 16 bit microprocessor. It can access 16 bit data simultaneously.
For interfacing memory module to 8086 CPU, it is necessary to have odd and even
memory banks. This can be achieved by using two 32 Kbyte EPROMs and two 32 Kbyte
RAMSs, one for odd bank and another for even bank.

In the maximum mode, memory and 1/0 read/write, address latch enable (ALE), Data
Enable (DEN), Data transmit/receive (DT/R) signals must be decoded externally using bus
controller 8288, Fig 5.25 shows the memory interface with 8086 in the maximum mode. As
32 kbyte RAM and EPROM need 15 address lines, A, to A;; lines are used. A; and BHE
are used to select even and odd memory banks respectively.

Memory Map :
BHE | By Age Agr Pog |Agg Bag Bgy Az A A Ag Ay Ay Ay Ag Ay | Ay Ay Ay Ay | Address Address
1111 1 1|60 0 0}j0 O @ 0|0 0 0 O§j0 O 0 0| FOODOH Even
1 1 1 1 1 i 1 1 1 T 1 1 1911 1 1 1 1 1 1 0| FFFFEH EPROMI
oc{1T 1 1 1|0 0 0 00 0 0 0|0 00 {0 00 1|FOOOIH Cidd
o1 11 (1T 11 1111 11T 11 141 11 1| FFFFFH EPRDMZ
1T /0 ¢ 1 1|0 0 9 0|0 O 0 OO0 O OC OO0 O O O] 300004 Ewen
110 ¢ 1 11+ 1 1 11 1 1 111 1 141 1 1 0| 3IFFFEH RAM1
g o 01 1 0 0 OO0 O O OGy0 0 O OfjO0 O O 1|3000IH Odd
a o0 1 19+ 11 11111 11111 1711 1 1 1| AFFFFH RAKM2

8086 System Configuration

5-31

Hitd:

m_.ﬂ

g

Shy

By

apowW WNW|XEW U] 9808 UNM WOHdI M ¥9 PUB WVH X ¥ Bujoepiaiu 'S "Bid

T—

ELES L
— JrE
e
b Ll
Y
w "y
3 llm-..._.

e E_-l_

Microprocessors and Interfacing

53 52 B2 52
(sl asers (vl 95228 (O3] BSZL2 (WouaT) B5TLT N oo sna HIOTE
FTHOHL]
A .m._..n.u_..a. .___n_._u_ﬁ_. H ﬁ _w_:.u_.—.._._. m_.ﬂnﬂﬁ_ H m_.d.r_ﬁ_ .m_...“_-uﬂ- m m_..ur_.d. n_._u.m_u m
£ oy ,,r T &% Fa
dpeeyy wsay WD
s
‘s
s
7 W <7 s |22 ¢ o808
IER
H 1
I
s T ¥4 4 HIAAMTIENTHL W Oy
Y Sy
H
| =T
(Zizace) (EELESTIRL ——

Hidden page

Microprocessors and Interfacing 5-33 8086 System Configuration

clear input, CLR, of the shift register. The outputs of the shift register will then all be low.
One of these lows will be coupled through a jumper (jumper 4 in the Fig. 5.26), will cause
the RDY1 input of the 8284 to be pulled low. However, WAIT states will not be inserted
unless RDY1 remains low long enough. Now, when RD, WR, or INTA goes low in the
machine cycle, the CLE inFlut of the 7415164 shift register will go high, and the shift
register will function normally. The highs on the INA and INB inputs will be loaded on to
the Q, output on the next positive edge of the clock. If the WAIT state jumper is in the]
position, then this high on the Q4 output will cause the RDY1 input of the 8284 to go
high again. For this case, the RDY1 input goes high soon enough that no WAIT states are
inserted.

The high loaded into the 7415164 shift register is shifted one stage to the right by each
successive clock pulse. When the high reaches the jumper connected to the RDY1 input, it
will cause the RDY] input of the 8284 to go high, as shown in the Fig. 5.27. The B08b will
then exit from a WAIT state on the next clock pulse. The number of WAIT states inserted
in a machine cycle is determined by how many states the high has to be shifted before it
reaches the installed jumper.

<t

-ttt

—

Fig. 5.27 Timing diagram for wait state generator

Review Questions

1. Explain Hw function of following pins in 8086,

i) NMI i) MN/MX i) TEST i) BHE v) DT/R i) DEN wii) Q5,05
Explain By maximumn mode signnls of B0RG,

. Explain He minimum mode signals BOS6.

With the help of Mack dingram explain memory nterfecing with 8086 and explain why hoo bus
cycles are required fo aocess odd address word 7

o b

5 Drawe and cxplain the memory map for BI85

Microprocessors and Interfacing 5-34 8086 System Configuration

w o mom

10,

11.

12,

13.

14.
15.
16.
17
18.
19.

Explain the 140 addressing capabilities of B086.

D and cxploin the [0 map of 8086,

Explain the general bus operation of 8086 with the help of timing dingram.
Explain th purpose of Ready, DEN and DT/R signals.

With the wep of block schematic dingrams exploin the operation of 8284 clock generator and 8286
transcetier.

Sketch block diagram showing besic 8086 mimimmum mode system. Explain functions of 8282 latches
ard 8286 tramscefver.

Define bus cyele, and explain the muinimum mode read and write bus cycle with proper timing
diggram.

Explain the HOLD response sequence in the minimum mode of 8086 with the help of timing
dingram.

Drawe and explain a block diagram showing 8086 in maximum mode configurakion.

Drvae and explain the timing dingrams of input and oufput transfers of 8086 in maxintem mode,
Indicate the signals which are different when 8086 in minimum mode and in maxinium mode,
Explain the operation of bus reguest and bus grant signal with the help of timing diagrarm.

Explain the function of wait state generator.

Dyesign the wail state generator to insert wail slates from zevo fo seven.

Qag

Direct Memory Access
(DMA) - 8237/8257

In microprocessor based systems data transfer can be controlled by either software or
hardware. Upto this point we have used program instructions to transfer data from 1/0
device to memory or from memory to I/O device. To transfer data by this method
microprocessor has to do following tasks :

1. To fetch the instruction
2. To decode the instructon and

3. To execute the instruction.

To carryout these tasks microprocessor requires considerable time, so this method of
data transfer is not suitable for large data transfers such as data transfer from magnehic
disk or optical disk to memory. In such situations hardware controlled data transfer
technique is used.

Software Controlled Data Transfer

In this method programmer executes a series of instructions to carry out data transfer.
The sample flow chart and program required to transfer data from memory to /0 device
is shown in Fig. 6.1. (Refer Fig. 6.1 on next page.)

Program :
Transfer Subroutine
MOV CX, COUNT 7 Initialize counter
MOV DX, PORT_addr ; Load port address in DX
BACK : MOV AL, [5I] 7 Get byte from memory
ouUT DX, AL r Send byte to ocutput port
INC DX ¢ Increment port address
INC 51 ;i Increment memory polnter
LOOP BACE ; Fepeat until CX = 0
RET

Hardware Controlled Data Transfer
In this technique external device is used to control data transfer, Extermal device
generates address and control signals required to control data transfer and allows

(6 - 1)

Microprocessors and Interfacing 6-2 Direct Memory Access (DMA) - B237/8257

Fig. 6.1 Flowchart

peripheral device to directly access the memory. Hence this technique is referred to as

Direct Memory Access (DMA) and external device which controls the data transfer is
referred to as DMA controller. Fig. 6.2 shows that how DMA controller operates in a

microprocessor system.

Acliirmss
Laiches
AD,, -AD g 3. Address Bus
ALE _E
Data Bus
A
Micro 0 Data Bus
Processor -]
B
Coantral Bus A
A Contral Bus
oA , 100 . .
HLDA HOoLD | MEME , MEMW B
HRQ |]
HLDA e
Controdler Canrol Bus
IOR . 10W Davice
MEMA , MEKMW idisk
DREG
NACK, 1

Fig. 6.2 DMA controller operating in a microprocessor system

Microprocessors and Interfacing 6-3 Direct Memcry Access (DMA) - 8237/8257

DMA Idle Cycle

When the system is turmned on, the switches are in the A position, so the buses are
connected from the microprocessor to the system memory and peripherals. Microprocessor
then executes the program until it needs to read a block of data from the disk. To read a
block of data from the disk microprocessor sends a series of commands to the disk
controller device telling it to search and read the desired block of data from the disk.
When disk controller is ready to transfer first byte of data from disk, it sends DMA
request DRQ) signal to the DMA controller. Then DMA controller sends a hold request
HRQ signal to the microprocessor HOLD input. The microprocessor responds this HOLD
signal by floating its buses and sending out a hold acknowledge signal HLDA, to the
DMA controller. When the DMA controller receives the HLDA signal, it sends a control
signal to change switch position from A to B. This disconnects the microprocessor from the
buses and connects DMA controller to the buses,

DMA, Active Cycle

When DMA controller gets control of the buses, it sends the memory address where
the first byte of data from the disk is to be written. It also sends a DMA acknowledge,
DACK signal to the disk controller device telling it to get ready for data transfer. Finally
{in case of DMA wrile operation), it asserts both the IOR and MEMW signals on the
control bus. Asserting the IOR signal enables the disk controller to output the byte of data
from the disk on the data bus and asserting the MEMW signal enables the addressed
memory to accept data from the data bus. In this technique data is transferred directly
from the disk controller to the memory location without passing through the CPU or the
DMA controller.

When the data transfer is complete, the DMA controller unasserts the HOLD request
signal to the microprocessor and releases the bus by changing switch position from B to A.
After gething the control of all buses the microprocessor executes the remaining program.

6.1 Features of B257

L. It is a programmable, 4-channel, direct memory access controller. Each channel can
be programmed individually. Therefore, we can interface 4 input/output devices
with 8257,

2. Each channel includes a 16-bit DMA address register and a 14-bit counter. DMA
address register gives the address of the memory location and counter specifies the
number of DMA cycles o be performed. As counter is 14-bil, each channe! can
transfer 2 (16 kbytes) without intervention of microprocessor.

3. It maintains the DMA cycle count for each channel and activates a control signal
TC (Terminal count) to indicate the peripheral that the programmed number of
DMA cycles are complete.

4. it provides another control signal MARK to indicate peripheral that the current
IMA cvele is the 125" cycle since Lhe previous MARK output.

Microprocessors and Interfacing 6-4 Direct Memory Access (DMA) - 8237/825T7

It has priority logic that resolves the peripherals requests. The priority logic can be
programmed to work in two modes, either in fixed mode or rotating priority

It provides inhibit logic which can be used to inhibit individual channels.
It allows data transfer in two modes : burst mode and cycle steal (single byte

It can execute three DMA cycles : DMA read, DMA write and DMA verify.
Auto load featur> of 8257 permits repeat block or block chaining operations.

2.
mode.
transfer) mode.
8.
9.
10. It operates in two modes : slave and master.

11.

12.

13.
14.

When DMA is in master mode, AEN signal provided by B257 allows to isolate
CPU buffers, latches and other devices from the system bus.

Extended write mode of 8257 prevents the unnecessary occurrence of wait states in
the B257, increasing the system throughput.

It operates on single TTL clock and it is completely TTL compatible.
It can be interfaced with all Intel microprocessor.

It transfers one bvie of data in four clock cycles. Thus giving high transfer rate
such as 500 Kbytes/second at 2

MHz clock input. ml:"'_\._..i"_::l .
1
16. Like 8085, 8257 also has READY oo, NN
input which allows 8257 to interface w3 [A
slower memory or [/0O devices that
: . . WEW[14 wl 1A
can not meet bus setup Y hes
required by the 8257, wark [Bl]
READY [|6 sl]y
6.2 Pin Diagram of 8257 — o
ADSTE [8 1al] a,
Fig. 6.3 shows pin diagram of 8257. aen e 2] 4
Data Bus (D;-D,) : These are bi-directional waa e e
tri-state signals connected to the system - Ve
data bus. When CPU is having control of C» e,
system bus it can access contents of address e sl e,
register, status register, mode sel register, RESET [113 sl Jo;
and a terminal count register and it can OATR: [ar{ 1oy
also program, control registers of DMA BACE, []+s =®l Jo,
controller, through the data bus. DROy[148 5| | CRER,
During DMA cycles these lines are used e 24 [] DACRy
to send the most significant bytes of the DRO, [1e 2] o,
memory address from one of the DMA 0RO [|1s 2|] oy
address registers. Gho 20 2] o,

Fig. 6.3 Pin diagram of 8257

Microprocessors and Interfacing 6-5 Direct Memory Access (DMA) - 8237/8257

Address Bus (Ay-A, and Ag-A;): The four least significant lines Ag-A, are
bi - directional tri - state signals. In the idle cycle they are inputs and used by the CPU to
address the register to be loaded or read. In the active cycle they output the lower 4 bits
of the address for DMA operation. A -A; are unidirectional lines, provide 4-bits of address
during DMA service.

Address Strobe (ADSTB) : This signal is used to demultiplex higher byte address and
data using external latch.

Address Enable (AEN) : This active high signal enables the 8-bit latch containing the
upper B-address bits onto the system address bus. AEN can also be used to disable other
system bus drivers during DMA transfers.

Memory Read and Memory Write (MEMR, MEMW) :

These are active low tri-state signals. The MEMR signal used to access data from the
addressed memory location during a DMA read or memory-to-memory transfer and
MEMW signal is used to write data to the addressed memory location during DMA write
or memory to memory transfer.

I/O Read and /O Write (IOR AND I0W) : These are active low bi-directional signals.
In idle cycle, these are an input control signals used by CPU to read/write the control
registers. In the active cycle I0R signal is used to access data from a peripheral and [OW
signal is used to send data to the peripheral.

Chip Select {E} : This is an active low input, used to select the 8257 as an [/0 device
during the idle cycle. This allows CIP'U to communicate with 8257.

Reset : This active high signal clears the command, status, request and temporary
registers. It also clears the first/last flip-flop and sets the Master Register. After reset the
device is in the idle cycle.

Ready : This input is used to extend the memory read and write signals from the B257
to interface slow memories or 1/0 devices.

Hold Request (HRQ) : Any valid DREQ causes 8257 to issue the HRQ. It is used for
requesting CPU to get the control of system bus.

Hold Acknowledge (HLDA) : The active high Hold Acknowledge from the CFPU
indicates that it has relinguished control of the system bus.

DREQ,-DREQ, : These are DMA request lines, which are activated to obtain DMA
service, until the corresponding DACK signal goes active.

DACK,-DACK,; : These are used to indicate peripheral devices that the DMA request is
granted.

Terminal Count (TC) : This is active high signal concern with the completion of DMA
service. The TC output signal is activated at the end of DMA service, i.e. when present
cycle is a last cycle for the current data block.

Microprocessors and Interfacing 6-6 Direct Me..iory Access (DMA) - B237/8257

MARK : This output notifies the selected peripheral that the current DMA cycle is the
128% cycle since the previous MARK output. MARK always occurs at 128 (all multiplies of
128) cycles from the end of the data block.

6.3 Block Diagram of 8257
Fig. 6.4 shows the funchional block diagram of IC 8257.

Deta o 1 [DRQy
D7 -y bus bit
CHNTR |—= MR.,
|
e [T PR
m-—"'ﬂ :> bit
CLE = Fead l__ CHTR i MT
RESET = write [
Agy —— logic
ﬁ.l-d—l- CHE 1". [— DRQ:
A L}
ﬂ: | :> bit
addr
I I—-.- CHTR [2
[: |
:;..-.... 5 e DRQ,
Ag - i N it
AT — Control v addr DATE
READY —] logic CNTR 3

WEWR ——of Sl

[-egjg[a' Fl'l'l:l'ilj'
HEE""” | resolver
ADSTH =]_
e i r" Internal bus
MARK
Fig. 6.4 Functional block diagram of 8257
Data Bus Buffer

It is a tri-state, bi-directional, eight bit buffer which interfaces the 8257 o the system
data bus. In the slave mode, it is used o transfer data between IICTOProcessor and

Microprocessors and Interfacing 6-7 Direct Memory Access (DMA) - 8237/8257

internal registers of 8257, In master mode, it is used to send higher byte address (Ag-As)
on the data bus.

Read/Write logic

When the CPU is programming or reading one of the internal registers of El"’r_’?rﬂi.e.
when the 8257 is in the slave mode), the Read /Write logic accepts the 1/0 Read (IOR) or
1/O Write (IOW) signal, decodes the the least significant four address bihﬁﬂ - A,) and
either writes the contents of the data bus into the addressed register (if IOW is low) or
places the contents of the addressed register onto the data bus (if IOR is low).

During DMA cycles (i.e. when the 8257 is in the master mode) the Read/Write logic
generates the [/0 read and memory write (DMA write cycle) or 1/O write and memory
read (DMA read cycle) signals which control the data transfer between peripheral and
memory device.

DMA Channels

The 8257 provides four identical channels, labeled CH,, to CH;. Each channel has two

sixteen bit registers : i) A DMA address register, and ii) A terminal count register,
DMA Address Register :
Fig. 6.5 shows the format of DMA address register. [b specifies the address ot the foes

memory location to be accessed. It is necessary to load valid memory address in the DMA
address register before channel is enabled.

Fig. 6.5 Format of DMA address register

Terminal Count Register : Fig. 6.6 shows the format of terminal count register.

T | To [Cog | Cip | Coy | Coa | T | Ca | C7 | Ca | Cs | Ca | C3 | Ty | Ty | Gy

.- 14 bit binary count (N-1) i
Fig. 6.6
T, | T, Type of operation
o | o DMA Verify cycle
0 1 DA, W_r.;ﬂ- cycle ’
1 | o DMA READ cycle
1 1 ilegal

Sobe - N s number of bybes tie be brassfersed

Microprocessors and Interfacing 6-8 Direct Memory Access (DMA) - B237/8257

The value loaded into the low order 14 bits {Cj3 - Cy) of the terminal count register
specifies the number of DMA cycles minus one before the terminal count (TC) output is
activated. Therefore, for N number of desired DMA cycles it is necessary to load the value
MN-1 into the low order 14-bits of the terminal count register. The most signihicant 2 bits of
the terminal count register specifies the type of DMA operation to be performed. It is
necessary to load count for DMA eycles and operational code for valid DMA cycle in the
terminal count register before channel is enabled.

Control logic

It controls the sequence of operations during all DMA cyeles (DMA read, DMA write,
DMA verify) by generating the appropriate control signals and the 16-bit address that
specifies the memory location to be accessed. It consists of mode set register and status
register. Mode set register is programmed by the CPU to configure B257 whereas the status
register is read by CPU to check which channels have reached a terminal count condition
and status of update flag.

Mode Set Register

Fig. 6.7 gives the format of mode set register. Least significant four bits of mode set
register, when set, enable each of the four DMA channels. Most significant four bits allow
four different options for the 8257

E':" BE. EE- Bd B'E BE H1 BD

Enables AUTOLOAD —) L Enables DMA channel 0
Enablas TC stop ———— e Enables DMA channel 1
Enablas EXTENDED WRITE Enablas DMA channel 2

Enables ROTATING PRIORITY Enables DMA channel 3

Fig. 6.7 Mode set register

It is normally programmed by the CPU after initializing the DMA address registers
and terminal count registers. It is cleared by the RESET input, thus disabling all options,
inhibiting all channels, and preventing bus conflicts on power-up.

Status Register

Fig. 6.8 shows the status register format. As said earlier, it indicates which channels
have reached a terminal count condition and includes the update flag desecribed
previously.

The TC status bit, if one, indicates terminal count has been reached for that channel.
TC bit remains set until the status register is read or the 8257 is reset. The update flag,
however, is not affected by a status read oprration.

Microprocessors and Interfacing 6-9 Direct Memory Access (DMA) - 8237/8257

B By By B, By B, By By

l i} i i}
i—-—Ti:: stalus for channel 0
Updata flag TC status for channel 1
TC status for channal 2

TC status for channel 3
Fig. 6.8 Status register

The update Hag bit, if one, indicates CPU that 8257 is executing update cycle. In
update cycle 8257 loads parameters in channel 3 to channel 2.

Priority Resolver
It resolves the peripherals requesis. It can be programmed to work in two modes,
either in fixed mode or rotating priority mode.

6.4 Operating Modes of 8257
The 8257 can be programmed to operate in following modes :

1. Rotating Priority Mode

In rotating priority mode, the priority of the
channels has a circular sequence. In this, channel
br;rinﬁ serviced gets the lowest priuri'r:.-' and the
channel next to it gets the highest priority as

®

shown in Fig. 6.9. fE:_I-:\\
Thus, with rotating priority in a single chip Fig. 6.9 Rotating priority

DMA system, any device requesting service is

guaranteed to be recognized after no more than three higher priority services have
occurred. This prevents any one channel from monopolizing the system. The rolaling
priority mode can be set by writing logic “1° in the bit 4 of the mode set register.

Fixed Priority Mode
In the fixed priority, channel 0 has the highest priority and channel 3 has the lowest
priority. Table 6.1 shows the priority ratings.

Priority Channel
Highest 1 0
2 1
3 2
Lowest 4 3

Table 6.1 Priority ratings

Hidden page

Hidden page

Microprocessors and Interfacing 6-12 Direct Memory Access (DMA) - B237/8257

. EE
sF SSEEEE
e

B8 1BIg[| " [5I8
B S 0 i i
T | 1
I [T 1]
] | | ol "".J
&£ d g 3 o S §
28 £ 8§ g _
g < 9 & ¥ .
I ERERE)\ Cam L

By
SN
—

Oy

Oy,
-

D:l'

= J
= BH[C 5
sxruzh -
o [=FTTRE L= R T

|
TR

:.ﬂn—lg oDom e
=

.IDH
AD,
-8
HOLD
HLDA
A264

Fig. 6.10

Hidden page

Hidden page

Microprocessors and Interfacing 6-15 Direct Memory Access (DMA) - B237/825T

RESET Temp Word Ternp Fidren 10 Euler
C5 —=a Count Rag (15} T
READY — % IEBTBUS 1
CLOCK — ... EBTES 3 o 4
AEN + o Rebaed B Runad ¢ Wrie Bulber Siw
ADSTE #—] o ' . E
e B G OO I
MEMR +—0 Addesss | Coure ek Cair.
m P |16} 1 18] J'_
— T
o+
O "‘““:-.-.-__r

DREQ, 4
DREQ,~7~# Prenty
HLDA —a] =100

Command 8}

HRO F:_:.:.:.:;;g =t Llagh 4]
DACK,,

DACK, #7- “™*
g e —

Fig. 6.12 Internal block diagram of B23TA

[r B (B Burperaey 0
[5]

.

2. Program Command Control Block : It decodes various commands given to the
B8237A by the microprocessor before servicing a DMA request. It also decodes the Mode
Control Word, which is used to select the type of DMA during the servicing,

3. Priority Encoder Block : Il resolves the priority between DMA channels
requesting service simultaneously.

Internal Registers : The 8237A contains 34 bits internal memory in the form of
registers. Table 6.2 gives the name, size and number of each register.

Name Size Number
Base Address Registers 16 bits 4
Base Word Count Registers 16 bits 4
Current Address Registers 16 bits 4
Current Word Count Ru-gi:-iterﬁ 16 bits 4
Temporary Address Registers 16 bits 1
Temporary Word Count Registers 16 bits 1
Status Registers 8 bits 1
Command Registers & hits 1
Temporary Registers & bits 1
Mode Registers & bils 4
Mask Registers 4 bits 1
Request Registers 4 bits 1

Table 6.2

Hidden page

Hidden page

Microprocessors and Interfacing 6-18 Direct Memory Access (DMA) - B237/8257

7. The word/byte ransfer count is decremented and the memory address is
incremented.

8. The DMAC continues to execute transfer cycles until the [/0 device deasserts DRQ
indicatirg its inability to continue delivering data. The DMAC deasserts HOLD
signal, giving the buses back to microprocessor, It also deasserts DACK.

9. 1/O device can re-initiate demand transfer by reasserting DRQ signal.
10. Transfer continues in this way until the transfer count has been exhausted.

The flowcharts in the Fig. 6.13 summarized the three data transfer modes of DMA
(See Fig. 6.13 on next page).

Cascade Mode

DMA channels can be expanded using this mode. Fig. 6.14 shows that two additional
devices are cascaded to the master device using two channels of the master device. This is
two level DMA system. In this the HRQ and HLDA signals from the additional 8237A are
comnected to the DREQ and DACK signals of a channel of the master 8237A. This allows
the DMA requests of the additional devices to communicate through the priority network
circuitry of the preceding device.

2ND LEVEL
15T LEVEL BATA
HlCHTRD'CESEQFE ---—-—n—lq._'_r-_-
[——— HRO OREQ HRC
' HLDA DACK ’ HLD#A
82378
DREC4——— HRO
DACH ™ HILDIA,
B2ITA
ADDITIONAL
DEVICES

Fig. 6.14 Cascade 8237s
Note : More 8237As can be added by adding more levels in the DMA system.

Fig. 6.15 (See Fig. on page 6-20) shows the detail connections for master and slave
DMAC's.

Microprocessors and Interfacing

Jojsue. purwaq (2)

%

Jossanoud
@) SBSNG O oAU
saysinfunas g

Jejsurl y30ig (q}

%

Jossanoud
Ol 588N JO 10U

6-19 Direct Memory Access (DMA) - 8237/8257

Fig. 6.13 Three data transfer modes of DMA

Microprocessors and Interfacing 6-20 Direct Memory Access (DMA) - B237/8257

TC
DRQT [HOLD
—_— L
EHT HLDA
DROE [+
— AEK z
AKE | E— 5
DRQS Master
—_— DMA
Em{ﬁ Controller E
DRO4 -
TG DAKA 1 IELE
& e
{ AN Slehzl| s
L 3z E
DRO2 eIz 5
DAKS
.1_
DRO2
— b
N
DAKZ Slave AE .
DRQ1 DMA MRDC .
— Controller o
AR MWTC i .
-+ J—
DRQO IORC
— OWE il >
DAKD -
—— W
i% i o7.on >

Fig. 6.15 Cascaded DMA controllers
6.10 Transfer Types

6.10.1 Memory-to-Memory Transfer

In this mode block of data from one memory address is moved to another memory
address. In this mode current address register of channel 0 is used to point the source
address and the current address register of channel 1 is used to point the destination
address in the first transfer cycle, data byte from the source address is loaded in the
temporary register of the 8237A and in the next transfer cycle the data from the temporary
register is stored in the memory pointed by destination address. After each data transfer
current address registers are decremented or incremented according to current settings.
The channel 1 current word count register is also decremented by 1 after each data
transfer. When the word count of channel 1 goes to FFFFH, a TC is generated which
activates EOP output terminating the DMA service.

Microprocessors and Interfacing 6-21 Direct Memory Access (DMA) - 8237/8257

6.10.2 Autoinitialize

In this mode, during the initialization the base address and word count registers are
loaded simultaneously with the current address and word count registers by the
microprocessor. The address and the count in the base registers remain unchanged
throughout the DMA service.

After the first block transfer ie. after the activation of the EOP signal, the original
values of the current address and current word count registers are automatically restored
from the base address and base word count register of that channel. After autoinitialization
the channel is ready to perform another DMA service, without CPU intervention.

6.11 Priority

In the 8237A there are two priority selection options.
1. Fixed Priority
2. Rotating Priority.

6.11.1 Fixed Priority

In the fixed priority channel 0 has the highest priority and the channel 3 has the
lowest priority. Table 6.3 shows the priority ratings.

Priority Channel
Highes! 1 0
2 1
3 2
Lowest 4 3
Table 6.3

In the fixed priority, after recognition of any one channel for service, the other
channels are prevented from interfering with that service until it is completed.

6.11.2 Rotating Priority

In this, channel being serviced gets the lowest priority and the channel next to it gets
the highest priority as shown in Fig. 6.16.

15t 2nd ard
Service Service Service
Highest 0 2 = Serice 3 = Service

1 == Service 3 == Request Y 0
2 _\n 1
3 1

Lowest 2

Fig. 6.16 Rotating priority

With rotating priority in a single chip DMA system, any device requesting service is
guaranteed to be recognized after no more than three higher priority services have
occurred. This prevents any one channel from monopolizing the system.

Microprocessors and Interfacing 6-22 Direct Memory Access (DMA) - 823778257

6.12 Register Description

1. Current Address Register : Each channel has 16-bit current address register. This
register stores the value of the address used during DMA fransfers. The address in the
current address register is automatically incremented or decremented after each transfer.
This register is loaded or read by the microprocessor and it also be re-initialized back to
its original value after EOP in the autoinitialization mode.

2. Current Word Register : Fach channel has a 16-bit current word count register.
This register determines the number of transfers to be performed. The actual number of
transfers will be one more than the number stored in the current word count register.
After each transfer the contents of word count register is decremented by 1. When the
value in the register goes from zero bt FFFFH, a TC will be El,-ru:ralud. This n.-*gi:e-sl:u:' 3
loaded or read by the microprocessor and it also be reinitialized back to its original value
after EOP in the autoinitialize mode.

J. Base Address and Base Word Count Registers : Each channel has base
address and base word count registers. These 16-bit registers store the original value of
their associated current registers. During auboinitialization these values are used o restore
the current registers to their original values. The base registers are stored simultancously
with their corresponding current registers.

4. Request Register : The B237A can respond o requests for DMA service which
are initiated by software as well as by a DREQ. Each channel has a request bit associated
with it in the 4-bit request register. Each bit in the request register is set or reset separately
under software control and is automatically cleared upon generation of a TC or external
EOP.

Request Register
T 6 5 4 3 2 1 0 - gjiNumber

— —— ~ | == [00 Seect channel 0
01 Select channel 1

Don't
Care 10 Seect channel 2
11 Select channel 3

{ﬂﬁaﬁmrnqamlbﬂ
1 Set reques! bil
Fig. 6.17 Request register

5. Command Register : Fig. 6.18 shows the bit pattern of the command register. It
is B-bil register which controls the operation of 8237A,

Microprocessors and Interfacing 6-23 Direct Memory Access (DMA) - B237/8257

Command Register
T 68 5 4 3 2 1 04— Bjt Number

| 0 Memory-to-memory disable
1 Memory-to-memory enable

© 0 Channel 0 addrass haold disable
1 Channel 0 address hold enable
Ly fbild=0

lﬂ Controfler enable
1 Controler dizable
(0 Normal timing

1 Compressed timing
x Hbitd=1

{0 Fixed priority
|1 Rotating priority

x Ifbitd =1

{0 DREQ sense active high
L1 DREQ sense active low

(0 DACK sense active low
,L1 DACK sanse active high

Fig. 6.18 Command register

6. Mask Register : Each channel request can be individually masked by setting the

proper bit pattern in the mask register. Fig. 6.19 shows the bit patterns of the mask
register.

7 & & 4 3 2 1 0 4+—npgjt M Number

— 00 Select channel 0 mask bit

. 01 Salect channel 1 mask bit
Don't Care 10 Select channel 2 mask bit
11 Select channel 3 mask bit

0 Clear mask bil
1 Set mask bit

Fig. 6.19 Mask register

Microprocessors and Interfacing 6-24 Direct Memory Access (DMA) - B237/8257

¥ o
Note : All four-bits of the mask register can be written with a single command.
Fig. 6.20.

¥ 6 5 4 3 2 1 04— nBRitMNumber

1 Sal channel 0 mask bit

— l I 0 Clear channel 0 mask bit

0 Clear channel 1mask bit
1 Bat chamnnal 1 mask bit

0 Clear channel 2 mask bit
1 Set channel 2 mask bit

p——

[0 Clear channel 3 mask bil
1 1 Sel channel 3 mask bil

Fig. 6.20 Mask register using single command

7. Mode Register : Each channel has a 6-bit mode register associated with it. The bit
praftera of the meode register is as shown in the Fig. 6.21.

Mode Register
T 6 5 4 3 2 1 04— BiNumber

00 Channel 0 select
01 Channel 1 selec
10 Charnmel 2 selec
11 Channial 3 select

00 Verfy transfar
01 'Wrile transher
\10 Read transfer

11 liegal
ix While & and 7 =11

/0 Autoinitiakzation disable
\ 1 Autoinitiakzation enable

/0 Address merement ssiect
1|L1 Address decremen] select

00 Demand mode sebeci
01 Singls mode salact
10 Block mode salect
11 Cascade mode selact

Fig. 6.2 Mode register

Microprocessors and Interfacing 6-25 Direct Memory Access (DMA) - 8237/8257

8. Status Register : The status register contains the information about the status of
the DMA channels. It includes which channels have reached a terminal count and which
channels have pu.lnr_iing | Y requests. The bit patbern for status n.:gl:-il:ur is shown in
Fig. 6.22.

T 6 3 4 3 2 1 04— gjNumber

]— 1 Channel 0 has reached TC
1 Channal 1 has reachad TC
1 Channel 2 has reached TC
1 Chanrisl 3 has reached TC

1 Channel 0 request

1 Channel 1 reques!

1 Channel 2 requasi
1 Channel 3 request

Fig. 6.22 Status register i

Temporary Register : It is used to hold data during memory to-memory transfers,

9. Register Addresses : Table 6.4 gives the addresses for differcnt registers of the

B237A.
Channel Register Operation Signals
Cs IOR IOW A, A, A, A
0 Base and Current Address Write i} 1 0 i} il 0]
0 1 0 o o]
Current Address Read 0 0 1 0 0 0
! 1] 0
Base and Current Wnn:ll Wirites o 1 i] 0 o 1
Count
0 a (1} 0 1
Cumant Word Counl Read 0 o 1 0 0 0 1
0 i 1) i

Hidden page

Microprocessors and Interfacing 6-27 Direct Memory Access (DMA) - B237/8257

Software Commands : The 8237A responds to the special software commands in the
program mode. Each software command has the specific code. The Table 6.5 lists the code
for special software commands provided by 8237A.

Signals Operation

Ay Ay Ay Ag ﬁ -Ew:

1 0 0 0 0 1 Read Status Regisier

1 0 1] 1 0 Write Command Register

1 0 o 1 0 1 llegal

1 0 o 1 1 0 Write Request Register

1 0 1 0 0 1 liegal

1 0 1 0 1 0 Wite Single Mask Register Bit
1 0 1 1 0 1 ilegal

1 0 1 1 1 0 Write Mode Register

1 1] 0 0 1 Hlegal

1 1 0 0 1 0 Chear Byte Pointer Flip/Flop
1 1 0 1 0 1 Read Temporary Register

1 1 0 1 1 0 Master Clear

1 1 1 o 0 1 Niegal

1 1 1 0 1 0 Clear Mask Regisier

1 1 1 1 il 1 llegal

1 1 1 1 1 0 Write All Mask Register Bits

Table 6.5
6.13 Interfacing

Fig. 623 shows that a typical method for configuring a DMA system with the 8237A
controller and an 8088 microprocessor system. The multimode DMA controller issues a
HRQ signal to the microprocessor whenever there is at least one valid DMA request from
a peripheral device. When processor responds with a HLDA signal, the 8237A takes
control of the address bus, data bus and control bus. The 8237A sends lower byte of the
address on the Aj-A; bus and higher byte on the data bus. The contents of the data bus
are then latched into the external latch to complete the full 16-bits of the address bus.

Microprocessors and Interfacing 6-28 Direct Memory Access (DMA) - 8237/8257

A= Ay ADDRESS BUS

re] [

0E
| STB
Py-By Ap Ay MEN HATER
ADSTB
B et 823TA-S
“—{HR0 o w |27 PP
2 | 5 <:§
ox JIEE g[8 B o
A 4 &
4k 4
CLK . :
RESET il
MRDC * T_
MWRC ¥
10 ¥
oW

S

Oy - By DATA BUS

Fig. 6.23 Interfacing of 8237 and BOBE

[]

1.

]
v

- T

Il.

Review Questions

Wiket 1= Hhe mewdd of DMA in microprocessor applications?

Fxplain tie arclibechire, organisation and arious niades of operation of a programmable DMA
corlroller 8257,

Explain i brief the different tupes of DMA data frarefer,
Whirt do yor understamd by the following terms 7

o Rotating priority mode,

o TC STOP maode.

Give the interfacing scheme of 8257/8237 and 8086,
List the features of 8237 A DMA controller.

Dranr and explain the architecture of 8237 A.

Explain the operating modes of 8237 A.

Explain thie dala Fransfer types supported by 8237 A.
Cxplain the priorify options aoailable in 8237 A.

Dot and explain the interfacing of 8237 A and 3088.

Qaga

8255 PPI (Programmable
Peripheral Interface)

The 8255 is a general purpose programmable 1/0 device used for parallel data
transter. It has 24 1/0 pins which can be grouped in three 8-bit parallel ports : Port A,
Port B and Port C. The eight bits of port C can be used as individual bits or be grouped in
two 4-bit ports : C, (Cy) and C e (T)

The 8255, primarily, can be programmed in bwo basic modes : Bit Set/Reset (BSR)
mode and [/0 mode. The BSE mode is used to set or reset the bits in port C. The 1/0O
mode is further divided into three modes :

Mode 0 : Simple Input/Output

Mode 1 : Input/Output with handshake

Mode 2 : Bi-directional 1/0 data transfer

The function of 1/0 pins (input or output) and modes of operation of /0 ports can be
programmed by writing proper control word in the control word register: Each it in the
control word has a specific meaning and the status of these bits decides the funchion and
operating mode of the 1/O ports.

7.1 Features of B255A
1. The 8255A is a widely used, programmable, parallel 1/0 device,

2. It can be programmed to transfer data under various conditions, from simple [/0O
to interrupt 1/0,

3. It is compatible with all Intel and most other microprocessors.

4. It is completely TTL compatible.

5. It has three 8-bit ports : Port A, Port B, and Port C, which are arranged in two
groups of 12 pins. Each port has an unique address, and data can be read from or
written to a port. In addition to the address assigned to the three ports, another
address is assigned to the control register inte which control words are written for
programming the 8255 to operate in various modes.

6. Its bit set/reset mode allows setting and resetting of individual bits of Port C.

(7-1)

Microprocessors and Interfacing 7 -2 8255 PPI (Programmable Peripheral Interface)

7. The 8255 can operate in 3 1/0 modes : (i) Mode 0, (ii) Mode 1, and (iii) Mode 2.

a) In Mode 0, Port A and Port B can be configured as simple B-bit input or output
ports without handshaking. The two halves of Port C can be programmed
separately as 4-bit input or output ports.

b) In. Mode 1, two groups each of 12 pins are formed. Group A consists of Port A
and the upper half of Port C while Group B consists of Port B and the lower half
of Port C. Ports A and B can be programmed as 8-bit Input or Output ports with
three lines of Port C in each group used for handshaking.

¢} In Mode 2, only Port A can be used as a bidirectional port. The handshaking
signals are provided on five lines of Port C (PC, - PCy). Port B can be used in
Mode 0 or in Mode 1.

8. All 1/0 pins of B255 has 2.5 mA DC driving capacity (i.e. sourcing current of
2.5 mA).

7.2 Pin Diagram
Fig. 7.1 shows the pin diagram of 8255.

= A =1
PAs]2 0] 1PA;
PA, 13 38| |PAg
Pag] 4 r [IPa,
RO[]s 36 [_]wWR
cs[]s 35 | _IRESET
ano[]7 11D,
A]e 3a[oy
Ao 321D,
PC;[J10 31D,
PCg] 11 A 30 Jo,
PCg[_]12 20]Dg
PCy[|13 28| 1Dy
PCy[]14 27| o,
PCi[]15 26 [IVee(+5 V)
PC,[116 251 1PB,
PCy[]17 24 []PB,
PBy[10 23l]PB,
PBy[|19 22[P8,
PB: 120 21]PB,

Fig. 7.1 Pin diagram of 8255A

Microprocessors and Interfacing 7-3 8255 PPI (Programmable Peripheral Interface)

Pin Symbols

Function

DyD; (Data Bus)

Thesa bi-directional, tri-state data bus lines aré connectad o the Syslam
data bus. They are used o transfer data and conirol word from
microprocessor (B085) 1o B255 or o recelve dala or stalus word from B255
to the BOBS.

PA,-PA; (Port A)

These B-bit bi-directional D pins are used to sand data 1o output device
and to receive data from input device. It functions as an 8-bit data output
latchibuifer, when used in output mode and an 8-bit data input buffer, when
used in input mode.

PB,-FB; (Port B)

These B-bit bi-directional VD pins are used io send dala to oulpul device
and to receive data from mput device. It funclions as an 8-bit data, output
latchibuffer when used in output mode and an B-bit data input buffer, whan
used in input moda

PCyPC;

These 8-bil bi-directional 'O pins are divided into two groups PO,
(PC4-PCy) and PCy (PCy-PCy). These groups individually can transfer data
in ar outl when programmed for simple 'O, and used as handshake signals
when programmed for handshake or bi-directional modes.

RD (Read)

When this pin is low, the CPU can read the data in the ports or the stalus
wiord, hrough the data buffar.

WR (Write)

When this inpul pin is low, the CPU can write data on the pors or in the
control register through the data bus buffer,

CS (Chip Select)

This is an active low input which can be enabled for data transfer operation
between the CPU and the 8255

RESET

This is an active high input used to resel B255. When RESET npul is high,
the controd regisier is cleared and all the ports aré set to the input moda.
Usually RESET OUT signal from 8085 is used to reset 8255,

Ay and A,

Thiess inpul signals along with RD and WR inputs control the sebection of
the controlislatus word registers or one of the three ports. Table. 7.1.
summarizes the status of A, , Ay C5, RD and WR lo access the control
wordiports. A, and Ay are generally connecled to the Hﬂ. Ay pins of the
address bus; the B255 therefore occuples four consecutrve locations in the
VD space.

RD |WR | CS Operations

input (Read) Operation
Q 1] Port A to Data Bus
0 1 0 Port B to Data Bus
0 1 0 Part C to Data Bus

Ay | As
0

] 1
1 0

0 0

i) 1

1 0

i 1

Output (Write) Operation
Data Bus o Port A

Data Bus to Porl B
Data Bus to Porl C

-
e o O O
o o O O

Data Bus lo Conirol Regisier

Microprocessors and Interfacing 7-4 8255 PPl (Programmable Peripheral Interface)

Disable Function
X X | x| X 1 Data Bus Tri-stated
11110 1] 0| Ilegal Condition
L X 1 1 0 Data Bus Tri-stated
Table 7.1 Port and register select signals summary

7.3 Block Diagram

Fig. 7.2 shows the internal block diagram of 8255A. It consists of data bus buffer.
control logic and Group A and Group B controls.

PA
GROUF GROUFP A
A, PORT A
P'OWEH —_— ah EDNTH'D'L < < >. EB:I ﬁpﬁﬂ
SUPPLIES | — GHND
L
GROUP A
(= o e
BI-DIRECTIONAL Upf'r e
DATA BUS () PCrPC,
urnuc:/t\
DATA,
BUS C >
BLIFFER BBIT
INTERMAL
DATA BUS b FeL
'<:I\|J Lower
(4) PC,-PC,
Hﬁ—-—-—ﬂ |
WR—q READ/ PBE
GROUP GROUP B
Ao— conmroL 1 8 K= K= PorTe
8]
Ay LOGIC CONTROL PB.-PB,
RESET —= "
S |

Fig. 7.2 Block diagram of B255A

Hidden page

Microprocessors and Interfacing 7 -6 8255 PPI (Programmable Peripheral Interface)

1. Cutputs are latched. 2. Inputs are buffered, not latched.
3. Ports do not have handshake or interrupt capability.

Mode 1 : Input/Output with handshake

In this mode, input or output data
transfer is controlled by handshaking

% signals. Handshaking signals are used to

transfer data between devices whose data

Computer =18 Printer transfer speeds are not same. For example,
ACK computer can send data to the printer with

BUSY large speed but printer can’t accept data

and print data with this rate. S0 computer

Fig. 7.3 Data transfer between computer hﬂ_ﬁ to send data with the speed with which

and printer using handshaking signals Printer can accept. This type of data transfer

is achieved by using handshaking signals

alongwith data signals. Fig. 7.3 shows data transfer between computer and printer using
handshaking signals.

These handshaking signals are used to tell computer whether printer is ready to accept
the data or not. If printer is ready to accept the data then after sending data on data bus,
computer uses another handshaking signal (STB) to tell printer that valid data 1s available
on the data bus.

The 8255 mode 1 which supports handshaking has following features.

1. Two ports (A and B) function as 8-bit 1/0 ports. They can be configured either as
input or output ports.

2. Each port uses three lines from Port C as handshake signals. The remaining two
lines of Port C can be used for simple /O functions.

3. Input and output data are latched.
4. Interrupt logic is supported.

Mode 2 : Bi-directional I/O data transfer

This mode allows bi-directional data transfer (transmission and reception) over a single
B-bit data bus using handshaking signals. This feature is available only in Group A with
Port A as the 8-bit bi-directional data bus; and PC;-PC; are used for handshaking
purpose. In this mode, both inputs and outputs are latched. Due to use of a single 8-bit
data bus for bi-directional data transfer, the data sent out by the CPU through Port A
appears on the bus connecting it to the peripheral, only when the peripheral requests it
The remaining lines of Port C Le. PC-PC, can be used for simple 1/0 functions. The Port
B can be programmed in mode 0 or in mode 1. When Port B is programmed in mode 1,
PCy-PC, lines of Port C are used as handshaking signals.

Microprocessors and Interfacing 7-7 8255 PPl (Programmable Peripheral Interface)

7.5 Control Word Formats

A high on the RESET pin causes all 24 lines of the three B-bit ports to be in the input
mode. All flip-flops are cleared and the interrupts are reset. This condition is maintained
even after the RESET goes low. The ports of the 8255 can then be programmed for any
other mode by writing a single control word into the control register, when required.

For Bit Set/Reset Mode
Fig. 7.4 shows bit set/reset control word format.

0 |8 | D |0y [Dy |8y | Dy | Dy

I | | BIT SET/RESET
® ® ® 1-3ET
- 0 - RESET
Dan't cans
BIT SELECT
ol1/2/3|a|5 (8|7
o|t1]ol1|of1]|0|1]B
olol1l1|olol1{1]8
olojojof1(1}1|1]Bs
BIT SET/RESET FLAG
i = ACTIVE

Fig. 7.4 Bit setireset control word format

The eight possible combinations of the states of bits Dy -Dy (B; B, By) in the Bit
Set-Reset format (BSR) determine particular bit in PC, - PC,; being set or reset as per the
status of bit Dy. A BSR word is to be written for each bit that is to be set or reset. For
example, if bit PC; is to be set and bit PC, is to be reset, the appropriate BSR words that
will have to be loaded into the control register will be, 0XXX0111 and O0XXX1000,
respectively, where X is don't care,

The BSR word can also be used for enabling or disabling interrupt signals generated
by Port C when the 8255 is programmed for Mode 1 or 2 operation. This is done by
setting or resetting the associated bits of the interrupts. This is described in detail in next
section.

For /O Mode

The mode definition format for 1/0 mode is shown in Fig. 7.5. The control words for
both, rmode definition and Bit Set-Reset are loaded into the same control register, with bit
Dy used for specifying whether the word loaded into the control register is a mode

Microprocessors and Interfacing 7 -8 8255 PPI (Programmable Peripheral Interface)

1 |Dg |Dg |Dy | Dy |D | Dy | Dy

GROUP B

PORT C (LOWER)
1= INPUT
0 =0UuTPUT

FORT B
1= INPUT
0= 0UTPUT

MODE SELECTION
0=MODED
1 = MODE 1

GROUP A

PORT C (UPPER)
1= INPUT
0 =0UTPUT

PORT A
1= INPUT
0= OUTPUT

MODE SELECTION
00 =MODE 0
01 = MODE 1
1% = MODE 2

MOODE SET FLAG
1=ACTIVE

Fig. 7.5 8255 Mode definition format

definition word or Bit Set-Reset word. If Dy is high, the word is taken as a mode
definition word, and if it is low, it is taken as a Bit Set-Reset word. The appropriate biks
are set or reset depending on the type of operation desired, and loaded into the control
register.

- Example 1 : Writc a proyram to inifuilize 3255 in e configuration gooen elod

1. Port A : Simple input
2. Port B : Simple onlput
3. Port C; : Output

4. Port ©y : Input

Assume address of the control word register of 3255 is 83H.

Microprocessors and Interfacing 7-9 8255 PPl (Programmable Peripheral interface)

Solution :

1 0 0 1 1 0 L] {0 = 98H
— Port C, - Output
Port B - Dutput
= Made 0 Port B - Simple 1O

Port Cy - input
——= Port A - Simple input
Mode 0 Port A - Simple VO

VD Mode

Source program: MOV AL, 98H ;7 Load control word
OUT B3H, AL i Send control word

mmp Example 2 : Write a program to initialize 8255 in the configuration given below :

1. Port A : Oubput with handshake

2. Port B : Input with handshake

3. Part C : Output

4. Port Cyy : Input

Assime address of the control word register of 8255 is 23H.

Solution
I 1 o 1 0 1 1 1 0 = AEH
L L~ ponc, - Outpu
—Port B
—= Mode 1 Fort B - Handshalke
Port C,
Port A
—=Mode 1 Fort A - Handshake
——= /0 Mode

Source program:; MOV AL, GAEH r Load control word
OUT 23H, AL i Send control word

Program : Blink port C bit 0 of 8255.
Prog-am Statement :

Write a program to blink Port C bit 0 of the 8255. Assume address of control word
register of 8255 is 83H. Use Bit Set/ Reset mode.

Hidden page

Microprocessors and Interfacing 7-11 8255 PPI (Programmable Peripheral Interface)

7.6 8255 Programming and Operation

7.6.1 Programming in Mode 0

The Ports A, B and C can be configured as simple input or output ports by writing the
appropriate control word in the control word register. In the control word, D, is set to 1’
(to define a mode set operation) and Dy, Dy and D; are all set to 0" to configure all the
ports in Mode 0 operation. The status of bits D;, D;, Dy and D, then determine (reter to
Fig. 7.5) whether the corresponding ports are to be configured as Input or Output.

For example in mode 0, if Port A and Port B are to operate as output ports with Port
C lower as input, and Port C upper as output, the control word that will have to be
loaded into the control register will be as follows.

D Dy Dy Dy Dy D, B Dy

1 0 0 0 0 0 0 | 1 = BiH

As mentioned earlier, this mode provides simple input and output operations for each
of the three ports. No handshaking is required, data is simply written to or read from a

specified port.
Input Mode : Fig. 7.6 shows the timing diagram for mode 0 input mode.

RO

Irpt X
TS, Ay Ay X X
SN D T S —

Fig. 7.6 Timing diagram for mode 0 input mode

After initialization of 8255 in the input mode 0, CPU can read data through the input
port by initiating read command with proper port address. Read command activates RD
signal. Upon activation of RD signal CPU reads the data from the selected input port into
the CPU register.

Microprocessors and Interfacing 7-12 8255 PPl (Programmable Peripheral Interface)

Output Mode : Fig. 7.7 shows the timing diagram for mode 0 outpul mode.

N/
0705 X X

T8, Ar. Ao X X
Outpu N

Fig. 7.7 Timing diagram for mode 0 output mode

WH

After imitialization of 8255 in the output mode 0, CPU can write data into the output
port by initiating write command with proper port address. CPU sends data on the data
bus and upon activation of WR signal, data on the data bus gets latched on the selected
output port.

Mode 0 Configurations :

A B GROUP A GROUP B
D, D, Dy Dg PORT A PORT C # PORT B PORT C
(Upper) (Lower)
0 0 1]] OUTPUT OUTPUT o OUTPUT OUTPUT
0 0 1] 1 OUTPUT OUTPUT 1 OUTPUT INPUT
0 0 1 0 OUTPUT OUTPUT 2 INFUT QUTPUT
0 0 1 1 OUTPUT OUTPUT 3 INPUT INPUT
0 1 0 0 OUTPUT INPUT 4 OuUTPUT QUTPUT
Q i 0 i OUTPUT IMPUT 5 OUTPUT IMPUT
0 1 1 0 OUTPUT INPUT] INPUT OUTPUT
0 1 1 1 oOuUTPUT INPUT T INPUT INPUT
|1 i]] 0 INPUT QUTPUT B OuUTPUT OUTPUT
1 1] o 1 INFUT QUTPUT 9 OUTPUT INPUT
1 1] 1 0 INPUT OUTPUT 10 INPUT OUTPUT
1 0 i 1 IMPLUT OUTPUT 11 INFUT INFUT
1 1 4] 0 INPUT INPUT 12 OUTPUT OUTPUT
1 1 0 1 INPUT INPUT 13 OUTPUT INPUT
1 1 1 0 INPUT INPUT 14 INPUT OUTPUT
1 1 1 1 INPUT INPUT 15 INPUT INPUT

Microprocessors and Interfacing 7-13 8255 PPI (Programmable Peripheral Interface)

7.6.2 Programming in Mode 1 (Input / Output with Handshake)

Both Group A and Group B can operate in Mode 1, either together, or individually,
with each port containing an 8-bit latched Input or Output data port, and a 4-bit port
which is used for control and status of the B-bit port.

When Port A is to be programmed as an input port, PC; ,PC, and PC; are used for
control. PC, and PC, are not used and can be Input or Output, as programmed by bit Dy
of the control word. When Port A is programmed as an output port, PC; ,PCs, and PC;
are used for control and PCy and PCs can be Input or Oulput, as programmed by bit D,
of the control word.

When port B is to be programmed as an input or output port, PC,,PC, and PC; are
used for control.

Mode 1 Input Control Signals :

1. STB (Strobe Input) :

This is an active low input signal for 8255 and output signal for the input device. The
input device activates this signal to indicate CPU that the data to be read is already sent
on the port lines of 8255 port. Upon activation of this signal 8255 loads the data from the
imput port lines into the input buffer of that port.

2. IBF (Input Buffer Full) :

This is an active high output signal for 8255 and an input signal for input device. This
signal is generated by 8255 in response to S5TB signal as an acknowledgment to input
device, It also indicates to the input device that the input buffer is full and it is not ready
to accept next byte from the input device. Therefore input device sends data on the port
lines only when IBF signal is not active. The IBF signal is deafﬂvated when CPU reads the
data from input buffer of the respective port by activation of RD signal.

3. INTR (Interrupt Request) :
This is an active high output signal generated by B255. A “high” on this output can be
used to interrupt the CPU when an input device is requesting service. The 8255 sets the
INTR when STB signal is ‘one’, IBF signal is ‘one’ and INTE is ‘one’, indicating CPU that
the data from the input device is available in the input buffer. This signal is reset by the
falling edge of the RD signal Le. immediately after reading the data from the input buffer.

INTE (Interrupt Enable) flip-flop is used to enable or disable INTR (Interrupt request)
signal. If INTE flip-flop is set, the interrupt request is generated depending on the status of
STB and IBF signals. If INTE flip-flop is reset, the interrupt request is not generated,
allowing masking facility for the interrupt.

Mode 1 : Port A Input Operation

Fig. 7.8 {a) shows Port A as an input port along with the control word and control
signals (for handshaking with a peripheral). When the control word (as in Fig. 7.8 (a) is
loaded into the control register, Group A is configured in Mode 1 with Port A as an input

Microprocessors and Interfacing 7 -14 8255 PPl (Programmable Peripheral Interface)

port. Port A can accept parallel data from a peripheral (like a keyboard) and this data can
be read by the CPU. The peripheral first loads data into Port by making the STB, input
low. This latches the data placed by the peripheral on the common data bus into Port A.
Port A acknowledges receplion of data by making [BF, (Input Buffer Full) high. IBFA is
set when the ﬁ,‘ input is made low, as shown in Fig. 7.8 (b).

MODE 1{PORT A)
Control word PArPAg CII
r====
I
D; DOg Dy Dy Dy O D D | INTE 1] PGy f=— 5TE,
i A
1 [o | 1 1 | 1 W L PCy e 1BF,
PCy, PCy
— 1= INPUT
0= 0QUTPUT
PC, INTR,,
_d 2
RD Pﬂfpcﬁrf-- 1o

Fig. 7.8 (a) Port A in mode 1

ETE' "A\j_/ i -

DATA Ol _(}

Fig. 7.8 (b) Timing diagram for port A in mode 1

INTR, is an active high output signal which can be used to interrupt the CPU so that
the CPU can suspend its current operation and read the data written into Port A by the
peripheral. INTR, can be enabled or disabled by the INTE, flip-flop which is controlled
by Bit Set-Reset operation of PC,. INTR, is set {if enabled by setting the INTE, flip-flop)
after the STB, has gone high again, and if IBF, is high.

On receipt of the interrupt, the CPU can be forced to read Port A. The falling edge of
the RD input resets IBFA and it goes low. This can be used to indicate to the peripheral
that the input buffer is empty and that data can again be loaded into it.

Microprocessors and Interfacing 7-15 8255 PPl (Programmable Peripheral Interface)

Mode 1 : Port B Input operation

Fig. 7.9 shows Port B as an input port {(when in Mode 1). The timing diagram and
operation of Port B is similar to that of Port A except that it uses different bits of Port C
for control. INTE is controlled by Bit Set/Reset of PC,.

MODE 1{PORT B)
PR, l(:]]
Conirol word 8o

PE:-——ETEE

D, Dg D D, Dy D,

1 1

PC, —IBFy

PCq INTRg

Fig. 7.9 Port B in mode 1

If the CPU is busy with other system operations, it can read data from the input port
when it is interrupted. This is often called Interrupt driven 1/0. However, if the CPU is
otherwise not busy with other jobs, it can continuously poll (read) the status word to
check for an IBF,. This is often called Program Controlled /0. The status word is
accessed E'I}' ra-au',ii:np_:| Port C (A, A, must be 10, RD and C5 must be low). The status word
format when Ports A and B are input ports in Mode 1, is shown in Fig. 7.10.

INPUT CONFIGURATION
D, Dg Dg Dy Dy Dy Dy DO
o | vo | 1BF, |INTE,[INTR, | INTE;| 1BFy [INTRg

F

I |
GROUP A GROUPB

Fig. 7.10 Mode 1 status word (Input)

Mode 1 : Output control signals

1. OBF (Output Buffer Full) :

This is an active low output signal for 8255 and input signal for the output device. The
B255 activates this signal to indicate output device that data is available on the output
port. Upon activation of OBF signal, output device reads data from the output port and
acknowledges it by ACK signal. The OBF signal is activated at the rising edge of the WR
signal and de-activated at the falling edge of the ACK signal.

Microprocessors and Interfacing 7-16 8255 PPl (Programmable Peripheral Interface)

2. ACK (Acknowledge Input) :

This is an active low input signal for 8255 and output signal for the output device. The
output device generates this signal to indicate 8255 that the data from port A or Port B has
been accepted.

3. INTR (interrupt Request) :

This is an active high output signal generated by 8255. A "high’ on this output can be
used to interrupt the CPU when an output device has accepted data transmitted by the
CPU. The B255 sets the INTR when ACK signal is ‘one’, OBF is ‘one’ and INTE is ‘one’,
indicating that the output device is ready to accept next data byte. This signal is reset by
the falling edge of the WR signal i.e. immediately after sending the data to the output
port.

INTE (Interrupt Enable) flip-flop is used to enable or disable INTR (Interrupt Request)
signal. If INTE flip-flop is set, the interrupt request is generated depending on the status of
ACK and OBF signals. If INTE flip-flop is reset, the interrupt request is not generated,
allowing masking facility for the interrupt.

Mode 1 : Port A output operation

Fig. 7.11 {a) shows Port A configured as an output port (When in Mode 1) along with
the control word and control signals (for handshaking with a peripheral). When the control
word (as in Fig. 7.11 (a)) is loaded into the control register, Group A is mrnﬁg‘ure’d in
Mode 1 with Port A as an output port. The CPU can send data to a peripheral (like a
display device) through Port A of the 8255.

MODE 1{PORT A)

PA-PAg :E:>

Control word
D, D O; D, Dy D, D, D PCy |—T8F,
1t e | 1] o w W —— ATR,
PC,, PC,
———= 1 = INPUT
0= QUTPUT
INTR,,
WH—o 2
e

Fig. 7.11 (a) Port A in mode 1

Microprocessors and Interfacing 7-17 8255 PPl (Programmable Peripheral Interface)

— .

DAaTA

OUTPUT
O FREVIOUS DATA _x MNEW DATA

PPy

Fig. 7.11 (b) Port A in mode 1 (Output)

The ﬁﬁ output (Cutput Buffer Full) goes low on the rising edge of the WR signal
(when the CPU writes data into the 8255). The OBF, cutput from 8255 can be used as a
strobe input to the peripheral to latch the contents of Port A. The peripheral responds to
the receipt of data by making the ACKI.L input of the 8255 low, thus acknowledging that it
has received the data sent by the CPU through Port A. The ACK, low sets the OBF,
signal, which can be polled by the CPU through OBF, of the status word to load the next
data when it is high again.

INTR, is an active high output of the 8255 which is made high (if the associated
INTE, flip-flop is set) when ACK, is made high again by the peripheral, and when OBF,
goes hlgh again (see timing diagram in Fig. 7.11 (b)). It can be used to interrupt the CFU
whenever the output buffer is empty. It is reset by the falling edge of WR when the CPU
writes data onto Port A. It can be enabled or disabled by writing a “1” or a 0’ respectively
to PO, in the BSE mode.

Mode 1 : Port B output operation
Fig. 7.12 shows Port B as an output port when in Mode 1. The operation of Port B is
similar to that of Port A. INTR, is controlled by writing a "1" or a "0 to PC; in the BSR
mode.
MODE 1(FORT 8)

Cominol waond

B, Dby Dy D, Dy Dy D 0O PC, p—=TBFy

1 1 S 1 _—

XXX T XX e | o2 R,
i B |

PCy f—e INTR

T

Fig. 7.12 Port B in mode 1 (Output)

|

|

i -

Microprocessors and Interfacing 7 -18 8255 PPl (Programmable Peripheral interface)

The status word is accessed by issuing a Read to Port C. The format of the status
word when Ports A and B are Output ports in Mode 1 is shown in Fig. 7.13.

p, b, O, D, Dy D, D DO

OBF, |INTE, | wD WO | INTR, | INTEg | TOBF, | INTRg

| |
GROUP A GROUFP B

Fig. 7.13 Mode 1 status word (Output)

7.6.3 Programming in Mode 2 (Strobes Bi-directional Bus O)

When the 8255 is operated in Mode 2 (by loading the appropriate control word), Port
A can be used as a bi-directional 8-bit 1/0 bus using for handshaking, Port B can be
programmed in Mode 0 or in Mode 1. When Port B is programmed in mode 1, PC, - PC,
lines of Port C are used as handshaking signals.

Fig. 7.14 shows the control word that should be loaded into the control port to
configure 8255 in Mode 2.

O Dg Ds D, Dy D; Dy DO

1 1‘>-<D-<D4w 10 | 140

PCo-PCy
1= INPUT
0= 0UTPUT

PORT B
1=INPUT
0= 0UTPUT

GROUP B MODE
0=MODE O
1=MODE1

Fig. 7.14 Mode 2 control word

Mode 2 : Control signals

INTR (Interrupt Request) : A "high’ on this output can be used to interrupt the CPU
for input or ocutput operations,

Microprocessors and Interfacing 7-19 8255 PPl (Programmable Peripheral Interface)

Output Control Signals :

OBF, (Output Buffer Full)
This is an active low output which indicates that the CPU has written data into
Port A,

ACK, (Acknowledge)

This is an active low input signal (generated by the peripheral) which enables the
tri-state output buffer of Port A and makes Port A data available to the peripheral. In
Mode ., . urt A outputs are in bri-state until enabled.

INTE 1

This is the flip-flop associated with Output Buffer Full. INTE 1 can be used to enable
or disable the interrupt by setting or resetting PC; in the BSR Mode.

Input Control Signals :

STB (Strobe Input)
This is an actve low :i'!‘I.'Fl'lll‘ 5igna] which enables Port A to lateh the data available at
its input.

IBF (input Buffer Full Flip-Flop)

This is an active high output which indicates that data has been loaded into the input
latch of Port A.

INTE 2

This is an Interrupt enable flip-flop associated with Input Buffer Full. It can be
controlled by setting or resetting PC; in the BSR Mode.

Mode 2 : Port A operation.

Fig. 7.15 shows Port A and associated
control signals when 8255 is in Mode 2.
::}— PCy[~=MTRs Interrupts are generated for both output and
input operations on the same INTR, (PC;)

(; PArPRKC 5 line.
L PC,{—omF, Status Word In Mode 2

The status word for Mode 2 (accessed
by reading Port C) is shown in Fig. 7.16.
D; - Dy of the status word carry information

2 about OBF,, INTE, ,IBF, .INTE, .INTR,.

PCy f—e 187, The status :':nf the bits D, - Dy depend on thfn

WH——eg , mode setting of Group B If B s
=] s — PC,-PC, bt programmed in Mode 0, Dy - Dy are the

same as PC; - PCy (simple 1/0); however if
Fig. 7.15 Mode 2 operation

Microprocessors and Interfacing 7-20 8255 PPl (Programmable Peripheral Interface)

B is in Mode 1, Dy - Dy

carry information about the control signals for Port B (as in

Fig. 7.10, or Fig. 7.13), depending upon whether Port B is an Input port or Ouiput port

respectively.

o, D Dy D, Dy D, D, DO,
TEF, | INTE, | IBF, | INTE, | INTR, M
I
GROUP A GROUP B

(DEFINED BY MODE 0
OR MODE 1 SELECTION)

Fig. 7.16 Status word for mode 2

Mode Definition Summary

MODE 0

IN ouTt
PA; IN ouT
PA, IN ouT
PA; IN ouT
PA; IN ouT
PA, IN ouT
PAg IN ouT
PAg IN ouT
PA; IN ouTt

MODE 0

IN out
PB, IN ouTt
PB, IN ouTt
PB, N out
PB, IN ouTt
PB, IN ouT
PB IN ouTt
PBy IN ouT
PB, IN ouT

IN ouT
% IN ouT
PC, IN ouT
PC,y IN ouT
PC, N ouT
PCy IN ouT
PCg M ouT
PC; IN ouT

MODE 1
IN ouT
I ouT
IM ouT
[ouT
I ouT
I ouT
1M ouT
M ouT
M ouT
MODE 1
IN ouT
I ouT
iM ouT
I QuT
IM QuT
IM QuT
] QuT
IM ouT
IM ouT
IM IHTF!E
I8F, OBFg
5T AC
INT INT
ETEI:'I I.’Dh
IBF [l
| -ﬁ-ﬂl‘(‘q
o DBF

MODE 2

GROUP A
ONLY

11111

111

MODE 2

GROUP A ONLY

Model
o
Mode1

Microprocessors and Interfacing 7-21 8255 PPl (Programmable Peripheral Interface)

7.7 Interfacing 8255 to 8086 in 1/O Mapped I/O Mode

The B0B6 has four special instructions IN, INS, OUT, and OUTS to transfer data
through the input/output ports in /0O mapped /0 system. M/10 signal is always low
when 8086 is executing these instructions, So M/IO signal is used to generate separate
addresses for, memory and input/output. Only 256 (28} 1/0 addresses can be generated
when direct addressing method is used. By using indirect address method this range can
be extended uplo 65536 (2'%) addresses.

Fier, 7.17 shows= the interfacing of 8255 with 8086 in 1/0 mapped 1/0 technique. Here,
RD and WR signals are activated when M/IO signal is low, indicating 1/0 bus cycle. Only
lower data bus (Dy - D) is used as 8255 is 8-bit device. Reset out signal from clock
generator is connected to the Reset signal of the 8255. In case of interrupt driven 1/O
INTR signal (PCy or PCy) from 8255 is connected to INTR input of B08S.

3 > a5

FLLT
9

Fig. 7.17 VO mapped /O

WO Map :
Port | control Register Address lines Address
Ar Mg As Ay Az Ay A Ay
Port A 0 00D0O0COOD0OD 00H
Port B o 0 o0 0o 0 10 02H
Port C 0 000O0 1T OO D4H
Control register 00000 1 10 D6H

Mote : It is assumed that the direct addressing is used.

Microprocessors and Interfacing 7-22 8255 PPl (Programmable Peripheral Interface)

7.8 Interfacing 8255 to 8086 in Memory Mapped /O

In this type of 1/0 interfacing, the B086 uses 20 address lines to identify an 1/O
device; an 1/O device is connected as if it is a memory register. The 8086 uses same
control signals and instructions to access /0 as those of memory. Fl_g ?.lﬂs_hnws the
interfacing of 8255 with 8086 in memory mapped 1/0 technique. Here RD and WR signals
are activated when M/IO signal is high, indicating memory bus cycle. Address lines
Ap-A, are used by 8255 for internal decoding. To get absolute address, all remaining
address lines (A; - Ay,) are used to decode the address for 8255. Other signal connections

are same as in 1,/0 mapped [0,
an
D D, %}

My
i
PB,
s K
AD—E_/ PC
=D = K

— Wi
WR Resst 7

b P T i N
"FE'?‘?“;J.EZ‘ﬁﬁIGi‘EE

Fig. 7.18 Memory mapped /O

WO Map :

Register | vy A Arr| A Avs| A Aes | Ara| A [Are] Aa | A | A7 | Aa] A [A] 43 | A2 | &1 | A jaciress]
Pota |olofofofofo]olofo|ojo|ofofofofofo]o]o]o oooooH]
Pt |o0|oo|ofofo]olofofofofofofofalo|ofo]1]o loooozH]
Part ﬂDDﬂDﬂﬂﬂDDDﬂDEﬂDD1DﬂWﬂNHl
Eﬁnlrmmg'ﬁlﬂfﬂﬂﬂﬂﬂﬂﬂﬂﬂ'ﬂﬂﬂﬂﬂﬂﬂﬂ'F1DMH|

Hidden page

Microprocessors and Interfacing 7-24 8255 PPI (Programmable Peripheral Interface)

The IC 1408 consists of a reference current amplifier, an R/2R ladder and eight high
speed current switches. It has eight input data lines A; (M5B} through Ag (LSB) which
control the positions of current switches.

It requires 2 mA reference current for full scale input and btwo power supplies
Vee=+5Vand Vg = = 15 V (Vg can range from =5V to = 15 V).

The voltage V ; and resistor Ryy determines the total reference current source and Ris
is generally equal to Ry to match the input impedance of the reference current amplifier.

Fig. 7.20 shows 2 typical circuit for IC 1408.

T‘"’cc
'[Mf,‘e i EE 25K 5V
14 —Www—e
Az —] Ryg ret
Ay 25K
A
i A — R,
digit
input Ag, s IC 1408
4 —
Ag — Iy o
Ap | L— + g
Ay — = '-3-'
(LSB} 15 ')
6, , 3 Rys
15 pF == L)L
4 vEE - =
=15

Fig. 7.20 Typical circuit for IC 1408
The output current [, can be given as

[= E’."i[ﬁ.‘.+ﬂ+&+‘&4+h5+ﬁ+ﬂ A"]
R'H-

R W S T B~ U T R T T ol

Note : Input A; through Ag can be either 0 or 1. Therefore, for typical circuit full scale
current can be given as,

5 1 1.1 1 1 1 1 1
b = T&K[i*i*ﬁ*ﬁ*ﬁ*ﬁ*ﬁ*ﬁj
2mA x 255

E e——— = 1.9 A
756 m

Microprocessors and Interfacing 7-25 8255 PPl (Programmable Peripheral Interface)

It shows that the full scale output current is always 1 LSB less than the reference
current source of 2 mA. This output current is converted into voltage by 1 to V converter.
The output voltage for full scale input can be given as

Vo = 1992= 25K
498 V

Note : The arrow on the pin 4 shows the output current direction. It is inward. This
means that 1C 1408 sinks current. At (0000 0000); binary input it sinks zero current and at
(1111 1111)2 binary input it sinks 1.992 mA.

The circuit shown in the Fig. 7.20 gives output in the unipolar range. When digital
input is 00H, the output voltage is 0 V and when digital input is FFH (11111111)2, the
output x'tﬁltﬁgﬂ is + 5 V. This circuit can be modified ko g"u-'e I:riFInLar output.

Fig. 7.21 shows the circuit for giving output in the bipolar range. Here, resistor Ry
(5 K} is connected between V_, and the output terminal of IC 1408, This gives a constant
current source of 1 mA.

Ve
5 A 13 Ris +5
1 14 —".l'l.ﬂu"u——ﬂ"l,l'mr
S 1a, 25K
e I —1, R
; 3 ngﬁﬁ Iy
i — RBE
if'l.m Ay 1 m& 5K
digital g
input — Ay IC 1408 .
10 A — Iy A
L 2
1 ﬁ? &+ vu
N L K
15 g
comp—{16, . Ryg
16 pF == ‘ 25K

Fig. 7.21 Interfacing DAC in the bipolar range

The circuit operation can be observed for three conditions :
Condition 1 : For binary input (00H)

When binary input is 00H, the output current I, at pin 4 is zero. Due to this current
flowing through Ry (1 mA) flows through Ry giving V, = -5V,

Microprocessors and Interfacing 7-26 8255 PPI (Programmable Peripheral Interfaca)

Condition 2 : For binary input 80H

When binary input is 80H, the output current [, at pin 4 is 1 mA. By applying KCL at
node A we get,

g+l +1, =0
Substituting values of Iy and [, we get,
{1l mA) + (1 mA)+1; = 0
L = 0
and therefore the output voltage is zero.

Condition 3 : For binary input FFH

When binary input is FFH, the output current I, at pin 4 is 2 mA. By applying KCL at
node A we get,

—[B""]u"'lr':ﬂ

Substituting values of I and [, we get,

- (1 mA) + (2 mA) + [, 0
I; = -1 mA

Therefore, the output voltage is + 5 V. In this way, circuit shown in the Fig. 7.21 gives
output in the bipolar range.

Important Electrical Characteristics for IC 1408

* Reference current : 2 mA
= Supply voltage 4+ 5V Vcand =15V Vi
e Setting time : 300 ns
Full scale output current 0 1992 mA
* Apcuracy 1019 %
7.9.2 DACOB30

The DACDE3) is an advanced CMOS 8-bit DAC designed to interface directly with the
8080, 8048, 8085, Z80, and other popular microprocessors. A deposited silicon-chromium
E-2R resistor ladder network divides the reference current and provides the circuit with
excellent temperature tracking characteristics (0.05% of Full Scale Range maximum linearity
error over temperature). The circuit uses CMOS current switches and control logic to
achieve low power consumption and low output leakage current errors. Special circuitry
provides TTL logic input voltage level compatibility.

Microprocessors and Interfacing 7-27 8255 PPl (Programmable Peripheral Interface)

Double buftering feature allows this DAC to output a voltage corresponding to one
digital word while holding the next digital word. This permits the simultaneous updating
of any number of DACs.

The DACOB30 series (DACOS30/DACOS31 /DACDS32) are the 8-bit members of a family
of microprocessor-compatible DACs. For applications demanding higher resolution, the

DACION0 series (10-bits) and the DACI208 and DACI230 (12-bits) are available
alternatives.

Features
» Double-buffered, single-buffered or flow-through digital data inputs.
Easy interchange and pin-compatible with 12-bit DAC1230 series.
» Direct interface to all popular microprocessors.
e Builk-in facility for zero adjustment.
* Works with £ 10 V reference voltage.
e« Can be used in the voltage switching mode.
* Logic inputs which meet TTL voltage level specifications.
Operates "STAND ALONE" (without up) if desired.
» Available in 20-pin small-outline or molded chip carrier package.

Pin Diagrams

Fig. 7.22 shows the pin diagram of DAC0830. The function of each pin is explained in
Table 7.2.

s —]1* 20 Vee
WR, —— 2 19 |— ILE(BYTE1/BYTEZ)
GND — 3 18— WR,
Dl 4 17 —— XFER
Dl, — 5 16 |—— Dlg
o, — g 15 }—— DI,
D, (LSB) —— 7 14— Dig
Vrer 8 13 |—— DIy (MSB)
Reg o 12 lourz
GND —— 10 11— loum

DACOE30
Fig. 7.22

Microprocessors and Interfacing 7-28 8255 PPl (Programmable Peripheral Interface)

Control Signals [All control signals level actuated)

Cs Chip Select (active low). The CS in combination with ILE will enable WR,
ILE : Input Latch Enable (active high). The ILE in combination with C5 enables ﬁt_
WR, : wn'ha1.Tmm|mﬁ]mummmdmuigiml'ggndalammulmm

imput latch, The data in the Input latch s katched when WR, is high. To update the
input laich- CS and WHRy must be low while ILE is high.

WR, : Writa 2 (active low). This signal, in combination with XFER, causes the 8-bit data
which s available in the input latch o transfer to the DAC register,

XFER : Transfer control signal (active low). The XFER will enable WR, .

Table 7.2 Pin description

Other Pin Functions

Diy-Dly - [Dh:'IgSEEE; Inputs, Dl is the least significant bit (LSB) and DI, is the most significant bit

lewyry DAC Current Quiput 1, layry I8 @ maximum for a digital code of all 1's in the DAC
regisier, and is zero for all 0's in DAC regisier.

lewyrs DAC Current Ouiput 2. Lory * loyre = constant (| full scale for a fixed reference
voltage).

Ry, Feedback Resisior, The feedback resistor is provided on the IC chip for use as the

shunt feedback resistor for the external op-amp which is used to provide an cutput
voltage for the DAC. This on-chip resistor should always be used (not an external
resistar) since it matches the resistors which are used in the on-chip R-2R |ladder
and tracks these resisiors over lemperature.

VRer Referance Voltage Input This input connects an external precision voltage source
to the internal R-2R ladder. Vpep can be selected gver the range of +10 V to
=10 . This is also the analog voltage input for @ 4-quadrant multiplying DAC
application,

Vee Digital Supply Voltage. This is the power supply pin for the par. Ve can be from
+5 Ve 0 #15 Ve, Operation is optimum for +15 Ve,

GND : The pin 10 voltage must be at the same ground potential as lqry @nd 1oy for
current switching applications. Any difference of patential (Viog pin 10} will result in
a linearity change of

Wag pin 10 . _ . .
Ve For example, if Vgee = 10 V and pin 10 is 9 mV offset from | ry and

loyre, the linearity change will be 0.03%. Pin 3 can be offsel £ 100 mV with no
linganty change, but the logic input threshold will shift.

Functional Block Diagram

A most unique characteristic of this DAC is that the B8-bit digital input byte is
double-buffered. This means that the data must transfer through two independently
controlled 8-bit latching registers before being applied to the R-2R ladder network to
change the analog output. The addition of a second register allows two useful control

Hidden page

Microprocessors and Interfacing 7 -30 8255 PPl (Programmable Peripheral Interface)

o | 551
E E52
. H e
]
¥FER
E
R
. Analog
aulpsn 2
L
[
DAL i
ILE i I ® oipial
Cs WFER W2
EYSTEM" L
DAC DISAGLE -
L
— . 3
SYSTEM Wi, .
ETROBE

*TIE TO LOGIC 1 IF NOT NEEDED
Fig. 7.24 Controlling multiple DACs

) 1

o 805 TR

L

- __/ i
i 1

WHT &. Wﬁ! __/ T
e cpdsiad WF,{M_MWW latched
YFER s
ILE = LOGIC *1” __/7

Fig. 7.25 Timing diagram

The ILE pin is an active high chip select which can be decoded from the address bus
as a qualifier for the normal CS signal generated during a write operation. This can be
used to provide a higher degree of decoding unique control signals for a particular DAC,
and thereby create a more efficient addressing scheme.

Hidden page

Hidden page

Microprocessors and Interfacing 7-33 8255 PPl (Programmable Peripheral Interface)

£,
2 £t
5
=
K.
T
:#HM;;“- W :E
35§£§§§§|
eioisb| slelelsloklele |elel-ldo-e
ﬁ'é"f{f&”ﬁfﬁ“‘f“"ﬁé“ﬁ‘ PEEEEEE
j=
ol ﬁ N LT
=1=1=T=1=1=1 imfﬁiﬁ'ﬂu
Saddcdds 1€ E"E"PE
TF]
&
HEE
T SLLLd

21 < &

Fig. 7.28 Interfacing DACO0830 to 8086 microprocessor using 8255

Hidden page

Hidden page

Microprocessors and Interfacing 7-36 8255 PPl (Programmable Peripheral Interface)

CLE QUT =T — CLEKIN
RO =]
WR ‘_m
IN +
Microprocessor e ADC AMALCG
FRSS e _ INPUT
Sy Address A oo ser cs 0803/ IN
0805
INT o} iR
" DBO
r1 DATA BUS DET

Fig. 7.32 Interfacing of ADC 0803/0804/0805 with microprocessor system

Interfacing the ADC 0803/0804/0805 to 8086 Microprocessor

Fig. 7.33 shows the interfacing of ADC 0803/0804/0805 to the 8086 microprocessor.
Here, converted digital data is read through data bus. The address is decoded using 1/0
mapped 1/O technique. As shown in the Fig. 7.33, address for ADC is 80H. The Fig. 7.34
shows the timing diagram of ADC operation. The conversion starts when C5 and WR
signals go low. The end of conversion is indicated by INTR output of the ADC. The INTR
output goes low after conversion is over. Therefore, INTR signal is polled through data
bus by enabling a buffer to detect the end of conversion. Once the conversion is over, the
digital data is read by activating 1/0 read command. This is illustrated in the following
procedure,

(See Fig. 7.33 and 7.34 on next page)

; Procedure to read data from ADC 0B03/70804/0805

READ PROC HNEAR
OUT BOH,AL i Start conversion
AGATIN: IN AL,BZ2H i Read INTR
AND AL, 80H ;i Check INTR
JNZ AGAIN { Repeat until INTR = 0
IN AL, BDH ; Read digital data im AL
RET

REAL ENDF

Microprocessors and Interfacing 7 -37 8255 PPl (Programmable Peripheral Interface)

D, DE'IJ /S Analog input
D, DB,
To IN-
Dy l_
e BS CLK R
IOR RD RI0K)
A d = « %
I WR cL 1 (450 pF)
INTR =
REF/2 VRer
Ag— A Yo
A—1B D Yop- 4 Cs AGND]
A2—C c ~ ADC OBO4 =
- 0
A—G; p
By — - E
A —G
74138

Fig. 7.33 Interfacing of ADC 0803/0804/0805 to BOBE

TN/
TN/

1
1
i
1
INTR :
]
i

Busy

i
Start of convarsion

Read data

Fig. 7.34 Timing diagram

Interfacing ADC 0803/0804/0805 to 8086 using 8255

Fig. 7.35 shows the interfacing of ADC 0803/0804/0805 to 8086 using B235. Hﬂ
port A of 8255 is used to read digital data from 8255. The start of conversion signal (WR
and C5 = low) generated using port B, PB, pin. The end of conversion is detected by
polling INTR pin through PC, The procedure given below illustrates the operation.

Microprocessors and Interfacing 7-38 8255 PPl (Programmable Peripheral Interface)

FFELLEL

L

—~ (7D
|/

LWR

=1

»>I[E PPPERPEP

RESET—

PAg |4
PA; |3 L. Analog nput
Y R W
b PA; [T ;
F k] 8
Dy PA; |ED Da IN~
Dy Phg 'SE—E nn: _|
Dﬁ Pﬁ"ﬂ -3-?-—-——— e, -
% PhAy |21 lpa CLKR
PB, |18 L R{10 K)
& ™ cLK
i PB, |20 E
W P’ (37— - Cl150 pF) T
:; PB, |22 :::]CE -
PB; |23 RO
RESET pg] [24 L 2 REF/2 | Viaer
cs PB; 26 ~
PCy HE:——| N
2 PC; :r _ l_
2 PC I3 ADC 0804 -
5 PCa 12
PCs [
PCq hig
PC;

Fig. 7.35 Interfacing of ADC 0803/0804/0805 to 8086 using 8255

READ

BACK:

READ

Application

PROC MNEAR
MOW AL, 99H

OUT 0&H, AL
MOV AL, OFFH
a0T Q2H, AL
MOV AL, OFCH
QUT 02H, AL
NOP

MOV AL, OFFH
QUT 02H,AL
IN AL,04H
AND AL,O1H
JNZ BACK
IN AL,00H
RET

ENDP

By

[Initialize B255 as port A and
port C input and port B output]

[Make WR
high]
[Send start of
conversion]
Wwait
[Make WR
higk]
Read INTR
Check INTR

Repeat until INTR = 0
Read digital data in al

This section illustrates the application of ADC/DAC to store and reproduce audio
signal or speech. Refer Fig. 7.36. Here, speech data is converted to digital data using
ADCOB04. This data is stored in the array at the sampling rate of 1/2048 of second. Then
this SEI'I'lP]-E'd data is sent to DACOB30 with same rate to reduce the speech signal. This is
illustrated in the following program.

Hidden page

Microprocessors and Interfacing 7 -40 8255 PPl (Programmable Peripheral Interface)

MODEL SMALL

~DATH
SAMPLES DB 2048 DUE (7 i Space for speech samples
LCODE
START : MOV AX,BDATA i [Initialize
MON DE, AX 7 data segment]
CALL READ ; Read speech
CALL WRITE ¢ Reproduce speech
READ FROC HNEAR
MoV CX, 2048 ; Initialize counter
MOV DI;OFFSET SAMPLES ; Initialize pointer to array
AGAIN: CUOT B4H; AL ; Send start of conversion
BACK: IN AL,BOH : Read INTR
AND AL, BOH ; Check INTR
JHNZ BACK ; Repeat until INTR = 0
IN AL, B4H ; Read sample
MOV [DI],AL 7 Store sample in array
INC DI ; Increment array pointer
CALL DELAY ; Wait for 172048 seconds
LOOF AGAIN ; Repeat 2048 times
BRET
READ ENDP
WRITE PROLC MEAR
MOV CX,2048 ; Initialize counter

MOV DI,OFFSET SAMPLES
BACKl: MOV AL, [DI)

Initialize array pointer
Bead sample from array

Na

s

QUT B2H, AL i Send it to DAC
INC DI ; Increment array polinter
CALL DELAY ;i Wait for 172048 second
LOOF BACKL ; Repeat 2048 times
RET

WRITE EHDFE

DELAY PEOC MEAR
; This procedure generates approximately 1/2048 second delay
; assuming BMHz Clock frequency of B086.

PUSH CX : Save CX register

AGAINL: MOV CX,0Z553 i Initialize counter
LOOP RAGAIML ; BRepeat until count = 0
FOP CX ; Restore CX register
RET

DELAY ENDP
END START

Microprocessors and Interfacing 7-41 8255 PPl (Programmable Peripheral Interface)

7.10.2 ADC 0808/0809

The ADC 0808 and ADC 0809 are monolithic CMOS devices with an B-channel
multiplexer. These devices are also designed to operate from common microprocessor
control buses, with tri-state output latches driving the data bus. The main features of these
devices are :

Features

¢ B-bit successive approximabion ADC.

¢ B-channel multiplexer with address logic.
Conversion time 100 ps.

+ [t eliminates the need for external zero and full-scale adjustments.
+ Easy to interface to all microprocessors.
* |t operates on single 5 V power supply.
+ QOutput meet TTL voltage level specifications.
Pin Diagram
Fig. 7.37 shows pin diagram of 0808 /0809 ADC.
3]+ ~ =12
4[] 2 27] } m
m s[]a 2| Jo
6]« 25] a
s 2|]e } Address
soc []s 2l]ec
ecc []7 e 2lae
oB3[|e 0803 21] oa7
ouUTPUT CONTROL [8 20] D86
cLk [] 10 19| 1 oas
vee L] 1 18 [_] oB4
REF + [] 12 17 | _] o&o
ano [13 16 |_] REF
pe1 (] 14 15 [] oe2
Fig. 7.37 Pin diagram of 0808/0809
Operation

ADC (808/0809 has eight input channels, so to select desired input channel, it is
necessary to send 3-bit address on A, B and C inputs. The address of the desired channel
is sent to the multiplexer address inputs through port pins. After at least 50 ns, this
address must be latched. This can be achieved by sending ALE signal. After another 2.5 us,
the start of conversion (SOC) signal must be sent high and then low to start the conversion
process. To indicate end of conversion ADC 0808/0809 activates EOC signal. The
microprocessor system can read converted digital word through data bus by enabling the
output enable signal after EOC is activated. This is illustrated in Fig. 7.38.

Microprocessors and Interfacing 7 -42 8255 PPl (Programmable Peripheral Interface)

Address po4

ALE _f::zs- usa] Nt

S0C (!
n

Foc . " S

M

E:‘: {: ----- X valid data >—

QE ’ |

Fig. 7.38 Timing waveforms for ADC 0808

0o

Interfacing
Fig. 7.39 shows typical interfacing circuit for ADC (0808 with microprocessor system.

The zener diode and LM 308 amplifier circuitry is used to produce a Vo an +V of
512 V for the A/D converter. With this reference voltage the A/D converter will have 256
steps of 20 mV each.

QB0 TN} =
DB1 N1 p—
ouT [B]= 1 INZ p—
IM DB3 1N f—
Ana
PORT/ DB4 A [Ndj— _,m,::'f 1K
PORTS DES DO (NSpE— — A
oBE © INGp—
per 9 mrh—
Eoc 8
: cLK B
A +
. output| _§ P 0.01 pF
CUTPUT o engbie 7414 e
PORT v L
S0C ce —
-REF GMD
———————ils
+ 10 miF
== sl ——
= Tariabum
& -

Fig. 7.39 Typical interface for 0808/0809

Microprocessors and Interfacing 7-43 8255 PPl (Programmable Peripheral Interface)

7.11 Stepper Motor Interfacing

A stepper motor is a digital motor. [t can be driven by digital signal. Fig. 740 shows
the typical 2 phase motor interfaced using 8255, Motor shown in the circuit has two
phases, with center-tap winding. The center taps of these windings are connected to the
12 V supply. Due to this, motor can be excited by grounding four terminals of the two
windings. Motor can be rotated in steps by giving proper excitation sequence to these
windings. The lower nibble of port A of the B255 is used to generate excitation signals in
the proper sequence.

~pleg |||
1T
> ki

-

==
-

Fig. 7.40 Stepper motor interface

The Table 7.3 shows typical excitalion sequence. The given excitation sequence rotates
the motor in clockwise direction. To rotate motor in anticlockwise direction we have o
excile motor in a reverse sequence. The excitation sequence for slepper motor may change
due o change in winding connections. However, it is not desirable to excite both the ends

Microprocessors and Interfacing 7-44 8255 PPl (Programmable Peripheral Interface)

of the same winding simultaneously. This cancels the flux and motor winding may
damage. To avoid this, digital locking system must be designed. Fig. 7.41 shows a simple
digital locking system. Only one output is activated {made low) when properly excited;
otherwise output is disabled (made high).

S e e DS
L

Fig. 7.41 Digital locking system

X

Step | X, Xz ¥4 Y2
1 o 1 0 1
2 1 0 0 1
3 1 0 1 0
4 0 1 1 0
1 o 1 0 1

Table 7.3 Full step excitation sequence
P escitation sequence given in Table 7.3 is called full step sequence in which
eacilation ends of the phase are changed in one step. The excitaion sequence given in
Table 7.4 takes two steps o change the excitation ends of the phase. Such a sequence is
called half step sequence and in cach step the motor is rotated by 0.9

Step X, Xy Y, Y,

1 0 1 0 1

2 0 0 0 1

3 1 0 0 1

4 1 0 0 0

5 1 L] 1]
B 0 0 1 D
Fi 0 1 1 0

a i 1 0 o

1 i) 1 a 1

Table 7.4 Half stép excitation sequence

Microprocessors and Interfacing 7-45 8255 PPl (Programmable Peripheral Interface)

We know that stepper motor 1% 51:-!:"FJ],'.|I;‘|:| from one Pl.'_lﬁ-‘il‘i,ﬂn b the next b:,-' changing the
currents through the fields in the motor. The winding inductance opposes the change in
current and this puts limit on the stepping rate. For higher stepping rates and more
torque, it is necessary bo use a higher voltage source and current limiting resistors as
shown in Fig. 742. By adding series resistance, we decrease L/R time constant, which
allows the current to change more rapidly in the windings. There is a power loss across
series resistor, but designer has to compromise between power and speed.

12V

Matar
winding

Fig. 7.42 Excitation circuit with series resistance

omp Example 3 : Interface stepper molor to the 8086 microprocessor system and wrife an
8086 assembly language program fo control the stepper motor,

Solution : Hardware : Fig. 7.43 shows the typical 2 phase motor rated 12 V/.67A/ph
interfaced with the 8086 microprocessor system using B255. Motor shown in the circuit has
two phases, with center-tap winding. The center taps of these windings are connected to
the 12 V supply. Due to this, motor can be excited by grounding four terminals of the two
windings. Motor can be rotated in steps by giving proper excitation sequence to these
windings. The lower nibble of port A of the 8255 is used to generate excitation signals in
the proper sequence. These excitabion 5igna|5 are buffered using driver transistors. The
transistors are selected such that they can source rated current for the windings. Motor is
rotated by 1.8° per excitation.

Hidden page

Hidden page

Microprocessors and Interfacing 7 -48 8255 PPl (Programmable Peripheral Interface)

7.12.2 Transistor Buffers

The Fig. 7.44 shows some buffer circuits using transistors. In these circuits, transistor 18
used as a switch. It can be switch ON or OFF with logic 0 or logic 1 on port pin
depending on the application. To make transistor ON with logic [at port pin we have to
use pnp transistor otherwise we have to use npn kansistor. When transistor is ON, its
collector current drives the load. To determine component values and transistor we have
te check maximum collector current of the transistor (I ,.), maximum h,, that transistor
can provide (hg.,). maximum collector to emitter breakdown wvoltage (Vgeppland a
maximum power dissipation (p,,,,,) allowed by the transistor.

+5 W
a+5 W
L
o]
A From Rg
5 o)
pin
From Ry
port
pin

L
]
A
1]

{a) npn transistor (k) prp trln—alutnr

Fig. 7.44 Transistor buffer circuits
Let us assume that the load current is 200 mA and maximum sourcing current of port
pin is 1 mA. Then transistor should have
lopas = 200 mA

Ic
IErn:x

200 mA
1 ma

hﬁr- miln > 200

de.ll: - vf&at " I'frrul-:
= 0.2 = 200 mA
= 40 mW

he min >

Assuming output high voltage of port pin equal to 45 V we have

4.5-0.8

Ry =
B 1 mA

3.7 K2

Hidden page

Hidden page

Microprocessors and Interfacing 7-51 8255 PPl (Programmable Peripheral Interface)

The mechanical relays or contactors, however, have several serious problems. When
the contacts are opened and closed, arcing takes place between the contact, which causes
the contacts to oxidize and pit. As the contacts are oxidized, they become higher resistance
contact and may get hot enough to melt. Another disadvantage of mechanical relays is that
when they switch ON or OFF at high-voltage point, they produce large amount of
electrical noise, called electromagnetic interference (EMI).

7.12.3.2 Solid State Relays

Y M2V To avoid the problems of mechanical
relays, solid state relays are used. In this

100 G triac is "F'“‘ as a switching e:lement and
isolation is provided by optoisolators or

™ pulse transformer. The Fig. 748 shows the

‘ % K i drver typical optoisolator circuitry. It consists of
i

LED and a phototransistor. LED glows
{MCT2E when digital input is high, making
phototransistor ON. Thus digital input
controls the wvoltage at the collector of
L Power phototransistor without any physical
ground comnnection between them, providing
isolation. When digital input is low, LED

grou and hence phototransistor is OFF,

Fig. 7.48 Optoisolator circuitry The Fig. 749 shows the typical pulse
transformer circuit. The pulae transformer

220V ac magnetically couples the control and
0~ e power circuitry avoiding electrical contact
between them.
Triag —=
e ,EE The optoisolator circuils give better
{ Load I performance at relatively low switching
port speed. Because it has switching speed
i limitations. On the other hand, at high
L swilching speeds pulse transformer
provides better performance. At low
Pulse transformer switching speed pulse transformer may get

Fig. 7.49 Isclation using pulse transformer saturated to deteriorate its performance.

Fram digital
circuit

7.13 Keyboard and Display Interfacing
In this section we discuss the keyboard and display interfacing using 8255.
mmp Example 4 : [nterface 4 x 4 keyboard with 8086 microprocessor,
Solution : Hardware : Fig. 7.50 shows a matrix keyboard with 16 keys connected to the

8086 microprocessor using 8255, A matrix keyboard reduces the number of connections,
thus the number of interfacing lines. In this example the keyboard with 16 keys, is

Microprocessors and Interfacing 7-52 8255 PPl (Programmable Peripheral Interface)

arranged in 4 x 4 (4 rows and 4 columns) matrix. This requires eight lines from the
microprocessor to make all the connections instead of 16 lines if the keys are connected
individually. The interfacing of matrix keyboard requires two ports : one input port and
one output post. Rows are connected to the Input Port (return lines) and columns are
connected to the Output Port (scan lines). When all keys are open row and column do not
have any connection. When any key is pressed, it shotts corresponding row and column. If
the output line of this column is low, it makes corresponding row line low; otherwise the
status of row line is high. The key is identified by data sent on the output port and input
code received from the input port. The following section explains the steps required to
identify pressed key.

0, —0, Py
D, —q 0, Pa,
0, —D,
0y — 0, o
e) iy [T
Dy —10s Pa |28
0y —o, Ay T
| 0; —{0; iy T
M >—|
A ' = A P —
i T PH, f—
)_l W A — A, 8 pg |20
m— f—h 2 PRl
RESET OUT——{ RESET § po, |22
i1 5 pEpE
PR, 24
Ay ——1 P, 12—
L — - %
B
PC, =
PC, £
e, G
PC,
PCs
PC,
P, |10
SCAN LINES

Fig. 7.50 Interfacing of 4 « 4 keyboard with B0BE

Check 1 : Whether any key is pressed or not

1. Make all column lines zero by sending low on all output lines. This activates all
keys in the keyboard matrix. (Note : When scan lines are logic high, the status on
the return lines do not change, it will remain logic high.)

2. Read the status of return lines. If the status of all lines is logic high, key is not
pressed; otherwise key is pressed.

Microprocessors and Interfacing 7-53 8255 PPl (Programmable Peripheral Interface)

Check 2 :
1. Activate keys from any one column by making any one column line zero.

2. Fead the status of return lines. The zero on any return line indicates key is pressed
from the corresponding row and selected column. If the status of all lines is logic
high, key is not pressed from that column.

3. Activate the keys from the next column and repeat 2 and 3 for all columns.

In Fig. 7.50 the scan lines are connected to the port Cp of 8255 and returns lines are
connected to the port Cy; of 8255

Flowchart
(See flowchart on next page).
Source program
PORTA EQU 0000
FORTC EQU 0004
CR EQU 0006
PROC HKEY NEAR
START: MOV AL, BLlH ¢ Initialize Port Cp as input and Port Cy
;7 as output
MOW DX, CR ¢ [Initialize
OUT DX, AL ; 8255 |
MoY AL, 00H
MOV DX, PORTC
OUT DX, AL ; Make all scan lines zero
BACK: IN AL,DX
AND AL,DFH
CMF AL,0OFH ¢ Check for key release
JHE BACE ¢ If not, wait for key release
BACK] : IM AL,DX
AND AL,OFH
CHMP AL, OFH ¢ Check for key press
JZ BARCEL ¢ If not, wait for key press
CALL DELAY ¢ Wait for key debounce
MOV BL; DOH ¢ Initialize key counter
MOV CL, 04H
MOV BH,; FEH { Make one column low
HEXTCOL: MOV AL, BH
oUT DX, AL
MOV CH, 04H { Initialize row counter

MOV DX, PORTA
IK AL.D¥ ; Bead return line status

Microprocessors and Interfacing 7-54 8255 PPI (Programmable Peripheral Interface)

nitgalize A255 poris

Actron all kays

Call Delay for keydebounce

i

Initinkzs key counbar
[

I Indliakze colusmn counbar

activales keys for one colurmn

i

initialize row counter

ks
Mo Iast
o
?

L

Sebact next column
1
Decrement column counler

as

Fig. 7.51 Flowchart

Microprocessors and Interfacing 7-55 8255 PPl (Programmable Peripheral Interface)

HWEXTROW: RCR AL, 1 { Check for one Row

JHC DISPLAY ; If zero, goto display
;! otherwise continue

INC BL ; Increment kKey counter

DEC CH ; Decrement row counter

JHE MEXTROW ; Check for next row

MOV AL, BH

RCL AL,1 : Select the next column

HMOY BH; AL

DEC C ; Decrement column count

JHNE MHEXTCOL i Check for last column 1f not repeat

JHMFP START i Goto start

RET

KEY EMDF

END START

Example 5 : Interface an 8-digit 7 segment LED display nsing 8255 lo the B08&6 microprocessor
system and write an 8086 assembly language routine to display message on the
displeny.

Solution : Hardware : Fig. 7.52 shows the multiplexed eight digit 7-segment display

connected in the 8086 system using 8255. In this circuit port A and port B are used as

simple latched output ports. Port A provides the segment data inputs o the display and
port B provides a means of selecting a display position at a time for multiplexing the
displays. The 8255 is addressed using direct addressing mode, so only Ag-A, lines are used

to decode the addresses for 8255,

For this circuit different addresses are :
PA = DOH PC = (MH
PB = 02ZH CR = 06H
The register values are chosen in Fig. 7.52 so the segment current is B0 mA. This
current is required to produce an average of 10 mA per segment as the displays are
multiplexed. In this type of display system, only one of the eight display position is ON at
any given instant. Only one digit is selected at a time by giving low signal on the
corresponding control line. Maximum anode current is 560 mA (7-segments x 80 mA =

560 mA), but the average anode current is 70 mA.

Software : Before going to write the software we must know the control word to program

B255 according to hardware connections. For 8255 Port A and B are used as output ports.

Control word format for B255

B3R Mode A PA PCy, Mode B PB PC_
1 0 0 H] x o o x = BOH

Hidden page

Microprocessors and Interfacing 7-57 8255 PPl (Programmable Peripheral Interface)

Program :
.MODEL SMALL
- DATHA
PR EQU HBOH
FB EQU BZH
CR EQU HEH
MES DB 41H,42H,43H, 44H,45H,46H,47TH, 48H
.CODE
i Procedure to display message on multiplexed LED display
DISFE FROC HNEAR
MOV AX,@DATA i [Initialise
MOV DS, AX H data segment]
MOV AL, BOH { Load control word in AL
OUT CR,;AL ¢ Load control word in CR
PUSH F ; Sawve registers
PUSH AX
FUSH BX
PUSH DX
PUSH 5I
; set up registers for display
MOV BX,08H i load countc
MOV AH, TFH ! load select pattern
LEA 5I,MES ; starting address of message
; display message
DISPL: MOV AL, AH ¢ select digit
OUT PB,AL
MOV AL, [BX+5I] ¢ get data
OUT PA, AL { display data
CRLL DELAY i walit for some time
ROE AH,OlH { adjust selection pattern
DEC BX i adjust count
JHZ DISPL ; repmat 8 times
FOP 51 i restore registers
POP DX
FOP BX
PO AX
FOPF
RET
DISPF ENDP

Note : This procedure must be called continuously to display the 7-segment coded
message in the memory.

Microprocessors and Interfacing 7 -58 8255 PPl (Pregrammable Peripheral interface)

7.15 Centronics Printer Interface

As explained earlier, handshaking signals are required to transfer data between two
devices whose speeds are not same. This centronics protocol is a printer protocol, gives
standards for printer interface.

It has 36 pins. The Fig. 7.53 shows the pin definitions for centronics interface. The
ASCIl characters are sent to the printer through eight data lines. Each data line has
individual ground to reduce the change of picking up electrical noise in the lines.

Signal | Return | Signal | Direction Description
Fin | Pin Mo.
No.
1 19 STROEE IN STROBE pulse o read data in. Pulse width must be more

than 0.5 ms at receiving terminal, The signal kevel is normally
“high® read-in of data is perfformed at the “low” level of this

signal.

2 20 DATA 1 I

3 21 DATA, 2 IN

4 22 DATA 3 IN

5 23 DATA 4 IN

& 24 DATA & IM

7 25 DATA 6 IN These signals represent B-bit parallel data Each signal is at
8 = DATA 7 - “high” level when data is logical “1° and “low” when logical
g 27 DATA 8 IN '

o
QuT Apcroximately 5 pulse; ow”" indicates that data has been

=
]

ms
recaived and the printer is ready to accept other data.

1 29 BUSY ouT A “high® signal indicates thal the printer cannol receive data,
Tha signal becomes “high® in the following cases:
1. During data entry. 3. In “office” state.
2. Dwring printing aperation. 4, During printer amor siatus.

12 30 PE ouTt A “high® signal indicates thal the printer is out of paper,

13 - SLCT ouT This signal indicates that the printer is in the selected state.

14 - AUTO IN When this signal being at “low”™ level, the paper is

FEED XT automatically fed one line afier printing. (The signal level can

be fixed to “low™ with DIP SW pin 2-3 provided on the control
circuit board),

15 - MNC Mot used.

16 - ov Logic GND level.

17 - CHASIS- - Printer chasis GMND. In the printer, the chasis GND and the

GHND logic GMD are isolaled from each other,
18 - NC - Mot usad.

18-30 — GND — “Twisted-Pair Retumn” signal; GND level.

Microprocessors and Interfacing 7-59 8255 PPl (Programmable Peripheral Interface)

3 INIT IM When the level of this signal becomes Slow™ the printer
controlier is reset to ils initial state and the print buffer is
cleared. This signal is normally at “high” level and s pulse
with mus! be mora then 50 ps at the receiving berminal,

a2 ERROR ouT The level of this signal becomes “low” when the printer is in
“Paper End” state. “Offlime” state and "Emor” state.

a3 - GND - Same as with pin numbers 19 1o 30.

34 - NC - Mot used.

a5 Pulled up 1o + 5 V. through 4.7 K-ohms resistance.

36 - SLCT IN I Data entry o the printer is possible only when the level of
this signal is “low".

Motes :

1. "Direction” refers bo the direction off signal flow as viewed from the printer.

2. "Return” denctes “Twisted-Pair Beturn™ and is to be connected ot signal-ground hevel.
When making the interface, be sure to use a twisted-pair cable for each signal and never fail to
complete connection on the return side to prevent noise effectively, these cables should be shielded and
conmeched o the chassis of the systerm undl

3 All interface conditions are based on TTL level. Both the rise and {all times of each signal must be less
than 02 ps.

4, Data transfer must not be carried out by ignoring the ACKNLG or BUSY signal. (Data transfer to this

follows

Input signals for printer :
1.

printer can be carned out only after confirming the ACKNLG signal or when the level of the BUSY

signal is “Tow™,

Fig. 7.53 Pin definitions for centronics interface

The other signals fall into two categories, signals sent to the printer to tell it which
operation to do and signals from the printer that indicate its status. These signals are as

INIT : This signal when activated tells the printer to perform its internal
initialization sequence.
2. STROBE (STB) : This signal when activated tells the printer that valid data is
available on the data bus.

Status signals output from printer :
1. ACK : This signal when low indicates that the data character has been accepted
and the printer is ready for the next data.

2. BUSY : This is active high signal. It goes high when printer is not ready to receive

a character.

Microprocessors and Interfacing 7-60 8255 PPl (Programmable Peripheral Interface)

3. PE : This active high signal goes high when printer is out of paper.
4. SLCT : This signal goes high if the printer is selected for receiving data.
5. ERROR : This active low signal goes low for variety of problem conditions in the
printer.
Fig. 7.54 shows the timing waveforms for transfer of data characters to an IBM printer
using the basic handshake signals.

susy L

—=| |=— APPROXIMATELY 5 us

ACKNLG —=| |o— 0.5 ps (MINIMUM)

DATA

—= |=— 0.5 us (MINIMUM)

—=| | 0.5 us (MINIMUM)

STROBE

Fig. 7.54 Timing waveforms for transfer of data characters to an IBM printer

Communication between Computer and Printer

Computer sends the INIT pulse for at least 50 ps, to initialize the printer. Computer
then checks for BUSY low to confirm whether the printer is ready to receive data or not. If
BUSY signal is low (not busy), computer sends an ASCII code on eight parallel data lines
and after at least 015 us, it also sends STB signal to indicate, valid data is available on the
data bus. Computer activates this STB signal for at least 0.5 ps and it also ensures that
valid data is present on the data bus for at least 0.5 us after the STB signal is disabled.
When the printer is ready to receive the next character, it asserts its ACK signal low for
about 5 us. The rising edge of the ACK signal tells the computer that it can send the next
character, The rising edge of the ACK signal also resets the BUSY signal from the printer.
When computer finds busy low, it sends the next character along with strobe and the
sequence is repeated till the last character transfer.

Centronics Printer Interface using 8255

Fig. 7.55 shows the circuit for interfacing centronics type parallel input printer to
BI55A. Port A is used to send 8-bit data to the printer. It is used in mode 1 so PC, (OBF
signal) is used as 5TB signal to tell the printer that valid data is available on the data bus
and PC; is used as an ACK signal. BUSY, PE and ERROR signals are connected to the PB,

tu B port lires.

. Microprocessors and Interfacing 7-61 8255 PPl (Programmable Peripheral Interface)

Hardware
Phy

Dg — 0 » B
D'.r =] Dy 8 _Pﬁ a4 ;
M=% 2 pggf OBF ~|EE 1
Ay Ay : PC, 25K ACK §
I0R ——={ 7D PC = | HIT H

Resal ——={ Rasel PB, PE

Fig. 7.55 Interfacing centronics printer to 8255A
In the next section we will see flowchart and program required to print a message.

Flowchart : Fig. 7.56 Flowchart for printer interface.

Initialize Paointer to string

|

Initialize counter with number
ol characters in the siring

1

Indialize 3255 with port A oulput,
port B input, port C lowear input

I Incremant siring purnari

Dacramant couniar

Fig. 7.56 Flowchart for printer interface

Microprocessors and Interfacing 7 - 62 PP! (Programmable Peripheral Interface)

In the program it is necessary to initialize 8255 as follows

Port Inputioutput Moda
Port A Output 1
Port B Imput 0
Port C Upper — —
Port C Lower Output —
Control word :
WO Mode A PA PC, | Mode B PB PC
1 0 1 0 x i} 1 a = A2H
'O map :
Bag Agy By Agyg Agqg Agg A Ay Ay Ay A& A Ay Ay Ay Ay | Address | Port
o o 0o o0 o o0 o O 0 0 0 0 0 0 0 0|0000H|PotA
0 0 0 0 0 o 0 0 L a a Q 0 0 0|J0002H| Port B
o 0 0 O O 0 o 0 O 0 0o 0 0 1 0 O0|0004H|PotC
] 4] i i a o 0 a a] 0 0 0 1 0D |000D6H | CR
Program
LMODEL SMALL
Porth EQ a000
PortB EQU a0z
PartC EQU aao04
CR EQU Q004
OATHA
Mesl DE ‘*Printer Paper Cut*®, 10, 13, *‘5'
Mesd DE “"Frinter OQffline’', 10, 13, ‘57
Mes3 DE ‘*Printing Ower’, 57
Mesd DE *This iz to be print’
COUMT DB 15
LCODE
START: MOV AX; IDATA ¢ Initialize data segment
MOV D&, A
LEA BX,MES] i Initialize pointer to string
MOV DX:CR i CR is control register address
MOV AL, ORZH ; Load control word
ouT DX, AL

MOV AL, 07 ; Make INTE, high to enable INTR,

Microprocessors and Interfacing 7 -63 8255 PPl (Programmable Peripheral Interfaca)

BACK :

NEXT:

AGATM:

CHECK:

CHECKEL:

LAST

ouT D, AL
Mo AL, 00
ouT DX, AL
MO CX, 0FFFH
DEC CX

LOOF BACK

Mo AL, 01
ouT DX, AL
Mo DX, Porth
IN AL, DX
MoV AH, AL
AND AL,0O1lH
JHEZ CHECKE
Mow AL, [BX]
Mo DX, Porth
ouT DX, AL
MOV DX, PortC
H AL, DX
AMND AL, 0B

JE AGAIN
INC BX

MCV AL, COUNT
DEC AL

MO COUNT, AL
JHEZ HEXT

JHE LAST

Mo AL; AH
AND AL, D2
Mo AL, AH

JE CHECKL
LEA D¥X,MES1
MoV AH, 0%H
INT Z1H

AND AL, 04
JHE HEXT

LER DX, MES2
Mo RH, 09H
INT 21H

JME MEXT

LEA DX, MES3
MoV RH, 09H
INT 21H

MO AH, 4CH
IKT Z1H

END START

L]

Make PCy low (BSR mode)
to give INIT low

Wait for more than 50 us

Make IMIT HIGH

Save status information
Check for BUSY if high goto
check

Send the character

Check for ACKE by
checking INTR, line high

Increment Etring pointer

Decrement counter
Check for counter = 0

Save printer status

Call for DOS interrupt
to display MES]

Call for DOS interrupt to
display MES2

Call for DOS interrupt to
display MES3

Terminate program

Hidden page

8086 Interrupts

8.1 Introduction

sometimes it is necessary to have the computer automatically execute one of a
collection of special routines whenever certain conditions exists within a program or in the
microcomputer system. For example, it is necessary that microcomputer system should
give response to devices such as kevboard, sensor and other components when they
request for service.

The most common method of servicing such device i= the polled approach. This is
where the processor must test each device in sequence and in effect "ask™ each one if it
needs communication with the processor. It is easy to see that a large portion of the main
program is looping through this continuous polling cycle. Such a method would have a
seripus and decremental effect on system throughput, thus limiting the tasks that could be
assumed by the microcomputer and reducing the cost effectiveness of using such devices.

A more desirable method would be the one that allows the microprocessor to execute
its main program and only stop to service peripheral devices when it is told to do so by
the device itself. In effect, the method, would provide an external asynchronous input that
would intorm the processor that it should complete whatever instruction that is currently
being executed and fetch a new routine that will service the requesting device. Once this
servicing is completed, the processor would resume exactly where it left off. This method
is called interrupt method. It is easy to see that system throughput would drastically
increase, and thus enhance its cost effectiveness. Most microprocessors allow execution of
special routines by interrupting normal program execution. When a microprocessor is
inberrupted, it stops executing its current program and calls a special routine which
"services” the interrupt. The event that causes the interruption is called interrupt and the
special routine executed to service the interrupt is called interrupt service
routine/procedure. Normal program can be interrupted by three ways :

1. By external signal
2. By a special instruction in the program or
3. By the occurrence of some condition.

(& - 1)

Microprocessors and Interfacing 8-2 8086 Interrupts

An interrupt caused by an external signal is referred as a hardware interrupt.
Conditional interrupts or interrupis caused by special instructions are called software
interrupts.

8.2 Interrupt Cycle of 8086/88

An BOB6 interrupt can come from any one the three sources :

* External signal
¢ Special Instruction in the program
+ Condition produced by instruction

8.2.1 External Signal (Hardware Interrupt)

An BOB6 can get interrupt from an external signal applied to the nonmaskable interrupt
(NMI) input pin, or the interrupt (INTR) input pin.

8.2.2 Special Instruction

B086 supports a special instruction, INT to execute special program. At the end of the
interrupt service routine, execution is usually returned to the interrupted program.

8.2.3 Condition Produced by Instruction

An 8086 is interrupted by some condition produced in the 8086 by the execution of an
instruction. For example divide by zero : Program execution will automatically be
interrupted if you attempt to divide an operand by zero.

At the end of each instruction cycle 8086 checks to see if there is any interrupt request.
If s0, B086 responds to the interrupt by performing series of actions (Refer Fig. 8.1).

1. It decrements stack pointer by 2 and pushes the flag register on the stack .

2. It disables the INTR interrupt input by clearing the interrupt flag in the Hag
register.

3. It resets the trap flag in the Hag register.

4. It decrements stack pointer by 2 and pushes the current code segment register
contents on the stack.

W

It decrements stack pointer by 2 and pushes the current instruction pointer
contents on the stack.

6. It does an indirect far jump at the start of the procedure by loading the CS and IP
values for the start of the interrupt service routine (ISR).

An [RET instruction at the end of the interrupt service procedure returns execution to
the main program.

Microprocessors and Interfacing 8-3 8086 Interrupts

INTERRUPT
SERVICE
PROCEDURE
MAINLINE PUSH FLAGS PUSH REGISTERS
PROGRAM CLEAR IF
CLEAR TF

PUSH CS
FUSH IP
FETCH ISR ADDRESS

\ POP IP
' POP CS
POP FLAGS

POP REGISTERS

IRET

Fig. 8.1 B086 interrupt response

MNow the question is "How to get the values of C5 and IP register 7 The 8086 gets the
new values of C5 and [P register from four memory addresses. When it responds to an
interrupt, the B086 goes to memory locations to get the C5 and IP values for the start of
the interrupt service routine, In an 8086 system the first 1 Kbyte of memory from 00000H
to 003FFH is reserved for storing the starting addresses of interrupt service routines. This
block of memory is often called the interrupt vector table or the interrupt pointer table.
Since 4 bytes are required to store the C5 and [P values for each interrupt service
procedure, the table can hold the starting addresses for 256 interrupt service routines.
Fig. 8.2 shows how the 256 interrupt pointers are arranged in the memory table.,

Each interrupt type is given a number between 0 to 255 and the address of each
interrupt is found by multiplying the type by 4 eg. for type 11, interrupt address is
1= 4 =445= D002CH

Only first five types have explicit definitions such as divide by zero and non maskable
interrupt. The next 27 interrupt types, from 5 to 31, are reserved by Intel for use in future
microprocessors. The upper 224 interrupt types, from 32 to 255, are available for user for
hardware or software interrupts.

When the 8086 responds to an interrupt, it automatically goes to the specified location
in the interrupt vector table to get the starting address of interrupt service routine. 5o user
has to load these starting addresses for different routines at the start of the program

Microprocessors and Interfacing

8086 Interrupts

LI

ADDRESS
3FFH
| TYPE 255 POINTER : __|
{AVAILABLE)
IFCH
AVAILABLE INTERRLUPT T]
INTERS (224
POQINTERS (224) | TYPE 33 POINTER: __|
(AVAILABLE)
084H
| TYPE 32 POINTER: __|
o {AVAILABLE)
07FH TYPE 31 POINTER :
(RESERVED)
RESERVED INTERRUPT = -
FOIMNTERS (27)
TYPE S POINTER : __|
{RESERWVEDY)
014H
| TYPE4POINTER: __|
OVERFLOW
010H

| TYPE3POINTER: |
1-BYTE INT INSTRUCTION

CS BASE ADDRESS

IP OFFSET

DDCH
DEDICATED INTERRUPT | TYPEZ2POINTER: _|
POINTERS (5) MON-MASKABLE
ooaH
| TYPE 1 POINTER : o
SINGLE-STEP
004dH
| TYPEOPOINTER: |
DIVIDE ERROR
i g |
|-7 16 BITS ———e]

Fig. 8.2 B0B6 interrupt vector table

8.3 8086 Interrupt Types

8.3.1 Divide by Zero Interrupt (Type 0)
When the quotient from either a DIV or IDIV instruction is too large to fit in the result

register; BUBG will automatically

execute type] 'mh::rrupt.

8.3.2 Single Step Interrupt (Type 1)

The type 1 interrupt is the single step trap. In the single step mode, system will
execute one instruction and wait for further direction from user. Then user can examine
the contents of registers and memory locations and if they are correct, user can tell the
system to execute the next instruction. This feature is useful for debugging assembly

language programs.

Hidden page

Microprocessors and Interfacing B-6 B086 Interrupts

executes the INTO instruction, the instruction will simply function as ar NOP (no
opergtion). However, if the overflow flag is set, indicating an overflow error, the BDB6 will
execube a type 4 interrupt after execubing the INTO instruction.

Another way to detect and respond to an overflow error in a program is to put the
jump if overflow instruction, (JO) immediately after the arithmetic instruction. If the
overflow flag is set as a result of arithmetic operation, execution will jump to the address
specified in the JO instruction. At this address you can put an error routire which
responds in the way you want to the overflow.

B.3.6 Software Interrupts

Type 0 - 255 :

The 8086 INT instruction can be used to cause the BIB& to do one of the 256 possible
interrupt types. The interrupt type is specified by the number as a part of the instruction.
You can use an INT2 instruction to send execution to an NMI interrupt service routine.
This allows vou to test the NMI routine without needing to apply an external signal to the
NMI input of the B086.

With the software interrupts you can call the desired routines from many different
programs in a system eg. BIOS in IBM PC. The IBM PC has in its ROM collection of
routines, each performing some specific function such as reading character from keyboard,
writing character to CRT. This collection of routines referred to as Basic Input Output
System or BIOS.

The BIOS routines are called with INT instructions. We will summarize interrupt
response and how it is serviced by going through following steps.
1. 8086 pushes the flag regster on the stack.
2. It disables the single step and the INTRK input by clearing the trap flag and
interrupt flag in the flag register.
3. It saves the current CS and 1P register contents by pushing them on the stack.

4. It does an indirect far jump to the start of the routine by loading the new values
of C5 and [P register from the memory whose address calculated by multiplying 4
to the interrupt type, For example, if interrupt type is 4 then memory address is
4 x4 =10, =10H. 5o 8086 will read new value of IP from 00010H and CS from
ODO12ZH.

5. Once these vn!ucﬁ are loaded in the CS and IP, B086 will fetch the instruction from
the new address which is the starting address of interrupt service routine.

6. An IRET instruction at the end of the interrupt service routine gets the previous
values of C5 and IP by popping the C5 and IP from the stack.

7. At the end the flag register contents are copied back into flag register by popping
the flag register form stack.

Microprocessors and Interfacing B-T7 BOB6 Interrupts

8.3.7 Maskable Interrupt (INTR)

The 8086 INTR input can be used to interrupt a program execution. The 8086 is
provided with a maskable handshake interrupt. This interrupt is implemented by using
two pins - INTR and INTA. This interrupt can be enabled or disabled by STI (IF=1) or CLI
(IF=0), respectively. When the B0B6 is reset, the interrupt flag is automatically cleared
(IF=0). So after reset INTR is disabled. User has to execute STI instruction to enable INTRE
interrupt.

The 8086 responds to an INTE interrupt o= follows :

1. The 8086 first does two interrupt acknowledge machine cycles as shown in the
Fig. 8.3 to get the interrupt type from the external device. In the first interrupt
acknowledge machine cycle the 8086 floats the data bus lines AD-AD and sends
out an INTA pulse on its INTA output pin. This indicates an interrupt
acknowledge cycle in progress and the system is ready to accept the interrupt type
from the external device. During the second interrupt acknowledge machine cycle
the 8086 sends out another pulse on its INTA output pin. In response to this

second INTA pulse the external device puts the interrupt type on lower 8 bits of
the data bus.

I T P T2 I Tl Tal To | Tl Ty T2 | Ta]l Tal

ne _/\ e/ \
. /

\
WA __/

— FLOAT
ADO-AD15 it

Interrupt
type

Fig. 8.3 Interrupt acknowledge machine cycle

2. Once the 8086 receives the interrupt type, it pushes the flag register on the stack,
clears TF and IF, and pushes the C5 and IP values of the next instruction on the
stack.

3. The B086 then gets the new value of [P from the memory address equal to 4 times
the interrupt type (number), and CS value from memory address equal to 4 times
the interrupt number plus 2.

Microprocessors and Interfacing

§-8 8086 Interrupts

8.4 Interrupt Priorities

As far as the 8086 interrupt priorities are concerned, software interrupts (All interrupts
except single step, NMI and INTR interrupts) have the highest priority, followed by NMI
followed by INTR. Single step has the least priority.

Interrupt Priority
Divide Error, Int n, Int O HIGHEST
et 4
INTR +
SINGLE - STEP LOWEST

l MaIN PROGRAM

D

DIVIDE ERROR

PUSH FLAGS, CS, IP
CLEAR TF & IF
TRAMSFER CONTROL

IF=0 TF

]
=]

PUSH FLAGS, C5, IP
CLEAR TF & IF

TRANSFER CONTROL

EXECUTE MMI

RETURNIF=0 IF=0

EXECUTE DIVIDE
ERROR ROUTIME

RETURKN TO MAIN PROGRAM

Fig. 8.4 Flow-chart for divide error
routine

The interrupt flag is automatically
cleared as part of the response of an B086 to
an interrupt. This prevents a signal on the
INTR input Fom interrupting a higher
priority interrupt service routine. The B(8&
allows NMI input to interrupt higher
priority interrupt, tor example suppose that
a rising edge signal arrives at the NMI input
while the 8086 is executing a DIV
instruction, and that the division operation
produces a divide error. Since the B086
checks for internal interrupts before it checks
for an NMI interrupt, the 8086 will push the
flags on the stack, clear TF and IF, push the
return address on the stack, and go to the
start of the divide error service routine. The
B086 will then do an NMI interrupt response
and execute non-maskable interrupt service
routine. After completion of NMI service
routine an B0B& will return to the divide
error routine. It will execute divide error
routing and then it will returm to the main
program {(Refer Fig. 8.4).

8.5 Expanding Interrupt Structure using PIC 8259

Interrupts can be used for a variety of applications. Each of these interrupt applications
requires a separate interrupt input. If we are working with an 8086, we get only two
interrupt inputs INTRE and NMIL For applications where we have multiple interrupt
sources, we use external device called a priority interrupt controller (PIC). Fig. 8.5 shows

the connection between 8086 and 8259,

Microprocessors and Interfacing 8-9 8086 Interrupts

=, e
AD, Dy
AD D Ry -
7 T IR, fo—
Iﬁ_:1 —
BOBE g258

Ry Ja—
NTA ~d WTE e fe

INTR = INT iR
T P

Fig. 8.5 Connection between B0B6 and 8259

8.5.1 Features of 8259

1.

[d

!_I'I

=]
'

It can manage eight priority interrupts. This is equivalent to provide eight
inberrupt pins on the processor in place of INTR pin.

[t is possible to locate vector table for these addibonal interrupts any where in the
memory map. However, all eight interrupls are spaced at the interval of either four
or eight locabions.

By cascading 525%9s it is possible to get 64 priority interrupts.

Interrupt mask register makes it possible to mask individual interrupt request.

The 8259A can be programmed to accept either the level wriggered or the edge
triggered interrupt request.

With the help of 8259A user can get the information of pending interrupts,
in-service interrupts and masked interrupis.

The 8259A is designed to minimize the software and real time overhead in
handling multi-level priority interrupts,

8.5.2 Block Diagram of 82594

Fig. 8.6 shows the internal block diagram of the 825%A. It includes eight blocks : data
bus buffer, read/write logic, control logic, three registers (IRR, ISR and IMR), priority

resolver, and cascade butfer.

Data Bus Buffer

The data bus allows the BISSH to send control words to the 82594 and read a status
word from the 8259A and read a status word from the B259A. The 3-bit data bus also
allows the 8259A to send interrupt types to the 8086.

Hidden page

Microprocessors and Interfacing B-11 8086 interrupts

Priority Resolver

The priority resolver determines the priorities of the bits set in the IER. The bi!
corresponding to the highest priority interrupt input is set in the ISR during the INTA
input.

Cascade Buffer Comparator

This section generates control signals necessary for cascade operations. It also generates
Buffer-Enable signals. As stated earlier, the 8259 can be cascaded with other 8259z in order
to expand the interrupt handling capacity to sixty-four levels. In such a case, the former is
called a mnt:_r, mitlw_- latter are called slaves. The B259 can be set up as a master or a
slave by the SP / EN pin.

CAS 0 -2

For a master 8259, the CASCAS, pins are outputs, and for slave B8239s, these are
inputs. When the 8259 is a master (that is, when it accepts interrupt requests from other
§259s), the CALL opcode is generated by the Master in response to the first INTA. The
vectoring address must be released by the slave 8259. The master sends an identification
code of three-bits (to select one out of the eight possible slave 8259s) on the CAS,-CAS,
lines. The slave 8259s accept these three signals as inputs (on their CAS;-CAS, pins) and
compare the code sent by the master with the codes assigned to them during initialisation.
The slave thus selected (which had originally placed an interrupt request to the master
5259) then puts out the address of the interrupt service routine during the second and
third INTA pulses from the CPU.

SP | EN (Slave Program /Enable Buffer)

The SP / EN signal is Hed high for the master. However, it is grounded for the slave.

In large systems where buffers are used to drive the data bus, the data sent by the
8259 in response to INTA cannot be accessed by the CPU (due to the data bus buffer
being disabled).

If an 8259 is used in the buffered mode (buffered or non-buffered modes of operation
can be specified at the time of initialising the 8259), the SP / EN pin is used as an output
which can be used to enable the system data bus buffer whenever the 8259's data bus
outpuls are enabled (when it is ready to send data).

Means, in non-buffered mode, the SP/EN pin of an 8259 is used to specify whether
the 8259 is to operate as a master or as a slave, and in the buffered mode, the SP/EN pin
is used as an output to enable the data bus bulter of the system.

8.5.3 Interrupt Sequence
The events occur as follows in an 8086 system :

1. One or more of the INTERRUFT REQUEST lines (IR0O-IR7) are raised high, setting
the corresponding IRR bit(s).

Microprocessors and Interfacing g-12 8086 Interrupts

2. The priority resolver checks three registers : The IRR for interrupt requests, the
IMR for masking bits, and the ISE for the interrupt request being served. It
resolves the prionity and sets the INT high when appropriate.

3. The CPU acknowledges the INT and responds with an INTA pulse.

4. Upon receiving an INTA from the CPU, the highest priority ISR bit is set and the
corresponding [RR bit is reset. The 8259A does not drive data bus during this
cycle.

5. A selection of priority modes is available to the programmer so that the manner in
which the requests are].'I]'lJL'l,’!-.‘i-L'd by the E259A can be configured to match his
system requirements. The priority modes can be changed or reconfigured
dynamically at any time during the main program. This means that the complete
interrupt service structure can be defined as required, based on the total system
environment.

6. The 8086 will initiate a second INTA pulse. During this pulse, the B259A releases a
8-bit pointer (interrupt type) onto the Data Bus where it is read by the CPU.

7. This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the end
of the second INTA pulse. Otherwise, the ISR bit remains set until an appropriate
EQI command is issued at the end of the interrupt subroutine.

8.5.4 Priority Modes and Other Features
The various modes of operation of the 8259 are :
(a) Fully Nested Mode,
(b} Rotating Priority Mode,
(c) Special Masked Mode, and
(d) Polled Mode.

a) Fully Nested Mode : !

~«Jfter initialization, the B259A operates in fully nested mode so it is called as default
mode. The 8259 continues to operate in the Fully Nested Mode until the mode is changed
through Operation Command Words. In this mode, IRD has highest priority and IR7 has
lowest priority. When the interrupt is acknowledged, it sets the corresponding bit in ISR.
This bit will prevent all interrupts of the same or lower level, however it will accept
higher priority interrupt requests. The vector address corresponding to this interrupt is
then sent. The bit in the ISR will remain set untl an EOl command is issued by the
microprocessor at the end of interrupt service routine.

But if AEOQI {Automatic End of Interrupt) bit is set, the bit in the ISR resets at the
trailing edge of the last INTA.

Hidden page

Microprocessors and Interfacing g8-14 8086 Interrupts

(i) Automatic Rotation

In this mode, a device, after being serviced, receives the lowest priority. Assuming that
IR3 has just been serviced, it will receive the seventh priority.

Ro | IR, | IRy | IRy | TR | TR | IRs | IR,
4 5 B 7 0 1 2 3

(ii) Specific Rotation

[n the Automatic Rotation mode, the interrupt request last serviced is assigned the
lowest priority, whereas in the Specific Rotation mode, the lowest priority can be assigned
to any interrupt input (IRp to IR;) thus fixes all other priorities.

For example if the lowest priority is assigned to IR;, other priorities are as shown
below.

Ry | IRy | IRs | IRy | IRy | IRs | IRg | TR,

] L] T 0 1 2 | 4

d) Special Mask Mode :

If any interrupt is in service then the corresponding bit is set in ISR and the lower
priority interrupts are inhibited. Some applications may require an interrupt service routine
to dynamically alter the system priority structure during its execution under software
control, for example, the routine may wish to inhibit lower priority requests for a portion
of its execution but enable some of them for another portion. In these cases we have to go
for special mask mode.

In the special mask mode it inhibits further interrupts at that level and enables
interrupts from all other levels (lower as well as higher) that are not masked. Thus any
interrupt may be selectively enabled by loading the mask register.

e) Poll Mode :

In this mode the INT output is not used. The microprocessor checks the status of
interrupt requests by issuing poll command. The microprocessor reads contents of 8259A
after issuing poll command. During this read operation the B259A provides polled word
and sets ISR bit of highest priority active interrupt request FORMAT.

I X x x X W_; 'Ihﬁ 'ﬁ'r'u

I[=1 = Oneor more interrupt requests activated.
I =0 - Nointerrupt request activated.
W2 W, Wy - Binary code of highest priority active interrupt request.

Microprocessors and Interfacing B8-15 8086 Interrupts

8.5.5 Programming the 8259A

The B259A requires two types of command words, Initialization Command Words
(ICWs) and Operational Command Words (OCWs).

The 8259A can be initialized with four ICWs; the first two are compulsory, and the
other two are optional based on the modes being used. These words must be issued in a
given sequence. After initialization, the 8259A can be set up to operate in various modes

by using three different OCWs; however, they no longer need to be issued in a specific
SequUence.

Flow chart :

NO [SNGL = 1)

WS

YES (IC4 = 1}

T4

READY TO AGCEPT
INTERRLIFT REQUESTS

Fig. 8.7 8259 A initialization flowchart

Initialization Command Word 1 (ICW1)
Fig. 8.8 shows the Inilialization Command Word 1 (ICW1).

A write command issued to the 8259 with A; = 0 and D, = 1 is interpreted as ICW1,
which starts the inttalizabion SEQUENCE.

It specifies

1. Single or multiple 8259As in the system.

2. 4 or 8 bit interval between the interrupt vector locations.
3. The address bits A - Ay of the CALL instruction.

4. Edge triggered or level triggered interrupts.

5 ICW4 15 needed or not.

Microprocessors and Interfacing B-16 8086 Interrupts

A

s D Dg Os O, Dy D, D

o

0| A | Ag | Ag | 1 [Lrm| D |snGL

L1 |

1= ICwW4 NEEDED
0= NO ICW4 NEEDED

1= SINGLE
0 = CASCADE MODE

CALL ADDRESS INTERVAL
1= INTERWAL OF 4
0= INTERVAL OF B

1 =LEVEL TRIGGERED MODE
0 = EDGE TRIGGERED MODE

Aq-Ag OF INTERRUPT
VECTOR ADDRESS
(MCE - BOVES MODE DMLY

Fig. 8.8 Initialization command word 1 (ICW1)

Initialization Command Word 2 (ICW2)
Fig 8.9 shows the Initialization Command Word 2 (ICW2).

As D Dy Dy Dy Dy D Dy Dy
ez 1Pz P13z [Pize 1Pme | A Aqs-Ag OF INTERRUPT
U A EAEARARE R B VECTOR ADDRESS
: | L | | | | | (MCS80/85 MODE)
T;-Ty OF INTERRUPT
VECTOR ADDRESS
(BOBG/BOBE MODE)

i

Fig. 8.9 Initialization command word 2 (ICW2)

A write command following ICW1, with A0 = 1 is interpreted as ICW2. This is used to
load the high order byte of the interrupt vector address of all the interrupts.

Initialization Command Word 3 (ICW3)

ICW3 is required only if there is more than one B259 in the system and if they are
cascaded. An ICW3 operation loads a slave register in the 8259. The format of the byte to
be loaded as an ICW3 for a master 8259 or a slave is shown in the Fig. 8.10. For master,
each bit in ICW3 is used to specify whether it has a slave 8259 attached to it on its
corresponding [R (Interrupt Request) input. For slave, bits Dy-D, of ICW3 are used to
assign a slave identification code (slave ID) to the 8259,

Microprocessors and Interfacing 8-17 BOBG Interrupts

ICW3(MASTER DEVICE)

1 5’ Eﬁ 55 5_‘ 53 5? 5.. So

1 = IR INPUT HAS A SLAVE

1 | I | | | I | 0 = IR INPUT DOES NOT
HAVE A SLAVE

i 0 0 (] 0 o ID: ID] ID{} SLAVE 1D
5T 12131451617
I L— o ol {0110l 1
glofay1joflali]1
ololololi(1] 111

Fig. 8.10 Initialization command word 3 (ICW3)

Initialization Command Word 4 (ICW4)

It is loaded only if the Dy bit of ICW1 (IC 4) is set. The format of ICW4 is shown in
Fig. 8.11.

Ag D Dg Dy DBy Dy D Dy DO

1 0 0 0 squl BUF | M/S | AEOI| uPM

1 = B0BEMB0EE MODE
= MCS - B0AE5 MODE

1= AUTO ECH
0 = NORMAL EOI

O1x MON BLFFERED MODE
110 BUFFERED MODESLAVE
101 BUFFERED MODEMASTER

1 = SPECIAL FULLY
HESTED MODE

0= NOT SPECIAL FULLY
MESTED MODE

Fig. 8.1 Initialization command word 4 (ICW4)

It specifies.

1) Whether to use special fully nested mode or non special fully nested mode.
2) Whether to use buffered mode or non buffered mode.

3} Whether to use Automatic EOl or Normal EOI

4) CPU used, B0B6 /8088 or B0B10.

Microprocessors and Interfacing 8-18 8086 Interrupts

After initialisation, the 8259 is ruad::-' to process interrupt requests. However, during
operation, it might be necessary to change the mode of processing the interrupts.
Operabon Command Words (OCWSs) are used for this purpose. T!'ue:,r may be loaded
anytime after the 8259°s initialisation to dynamically alter the priority modes.

Operation Command Word 1 (OCW1)

A Write command to the 8259 with Ay = 1 (after ICW2) is interpreted as OCWI.
OCWT1 is used for enabling or disabling the recognition of specific interrupt requests by
programming the IMRE.

M = 1 indicates that the interrupt is to be masked, and M = 0 indicates that it is to be
unmasked as shown in Fig. 8.12.

Ag DO Dg Dg D, Dy D Dy

Dy
1] My | Mg | Mg | My | My | My | My | Mg

INFERRUFT MASK
1= MASK SET
0= MASK RESET

Fig. 8.12 Operation command word 1 (OCW1)

Operation Command Weord 2 (OCW2)

A Write command with Ay = 1 and Dy Dy = 00 is interpreted as OCWL2 The
R{Rotate), SL (Select-Level), EOI bits control the Rotate and End Of Interrupt Modes and
combinations of the two. Fig. 8.13 shows the Operation Command Word format. L; - L,
are used to specify the interrupt level to be acted upon when the SL bit is active.

Aa Dy D, Dy oy Oy Dy 0, DO
I a R SL | Ed e} f Ly Ly Ly IR LEVEL TO BE ACTED UPON
1

] | L

HOM-BFECIFIC ED0 COMBMAND
SPECIFIC EQI COMBMAMD } EHD OF INTERRUFT
ROTATE O8N NON-SPECIFIC EQl COMMAND
ROTATE IN AUTOMATIC E04 MODE (SET) } AUTOMATIC ROTATION
ROTATE N AUTCHATIC ECH MODE (CLEAR)
* ROTATE O SPECIFIC EXH COMBMAMD
" BET PREDRITY COMMAND } SPECIFIC ROTATION
HO OPERATION

* LO-Ld ARE USED

& [t 1]
= | e e e
=|af=|wn]
I .

T
1
1
1

o=l

—

(=1 B = -3 P P
B B =R =1 =] B
L=] [=1 Foy L= £ =1 [P0]

Fig. 8.13 Operation command word 2 (OCW2)

Hidden page

Microprocessors and Interfacing B8-20 8086 Interrupts

IMR Status Read

A Read command issued to the 8259 with Ay = 1 (with RD , CS = 0) causes the 8259
to put out the contents of the Interrupt Mask Register. OCW3 is not required for a status
read of the IME.

As described earlier, the sequence shown in flowchart (Fig. 8.4) must be followed to
initialize 8259A. According to this flow chart an ICW1 and an ICW2 must be sent to any
8259A in the system. If the system has any slave 8259As (cascade mode) then an ICW3
must be sent to the master, and a difference ICW3 must be sent to the slave. If the system
is an B0B6, or if you want to specify certain special conditions, then you have to send an
ICW4 to the master and to each slave. To have better understanding the initiation
sequences for different specification are given in the next section.

Note : It is assumed that A, of the system bus is connected to the Ay of the 8259A. So
the internal addresses correspond to 0 and 2. It is also assumed that the base address of
the device is 40H. 5o the bwo system addresses for the 8259A are 40H and 42H.

mmp Example 1 @ Wrile the inilialization instructions for 8259A interrupt controller to meef
e follotoing specifications :
a) Interrupt type 32, b) Edge triggered, single and ICW4 needed.
c) Mask interrupts [R1 and TE3.

Solution :

ICW1

Ay Ay A 1 LTIM | ADI | SNGL | 1C4
0 0 0 1 0 0 1 1 = 13H

MNote : When used with an 8086, bit Dy, Dy, D, and Dy are don’t care, so we make
them (s for simplicity.
ICW2

In an 8086 systern ICW2 is used to tell the 8259A the type number to send in response
bo an interrupt signal on the IRD input.

By | Bg | Bs | By | By | By [By | By
0 0 1 i 0 0 0 0 =20H =32 Decimal

ICW2 for sending interrupt type 32 to the 8086 in response to an IR0 interrupt is 20H

MNote : For an IR1 input the 8259A will send 00100001 binary (33 decimal) and so on
for the other IR inputs.

ICW3
Since we are not using a slave in our example, we don't need to send an ICW3.

Microprocessors and Interfacing 8-21 8086 Interrupts

ICW4

For our example, the only reason we need to send an ICW4 is to let the B259A know
that it is operating in an 8086 system. We do this by making bit D, of the ICW4 one.

oCcwi1

An OCWI1 must be sent to an 8259A to unmask any IR inputs. For our example we
want to mask IR1 and IR3, so we put 1's in these two bits and (s in the rest of the bits.

M, Mg M5 My M M, M, My

/] | 0 1] L] 1 0 1 0 = DAH
Program :

MOV AL, 13H ; edge triggered, =single, ICW4 needed

OUT 40H, AL ; Send ICWL

MOV AL, 20H ; type 32 is first B359A type

OUT 41H, AL ! send ICWZ

MOV AL, 01lH ; ICW4, B086 mode.

COUT 41H,AL ¢ send ICW4

MOV AL, OAH ; OCW1l to mask IRl and IR3

OUT 41H,AL : send OCW1

iy Example 2 :

Write the initialization instructions for master and slave configuration to

meet the following specifications ;

1) The INTR of slave is routed through IR2 of the master 8259A to the 8086.
2) Masler and slave are both level triggered.

3) First inferrupt types for master and slave are 32 and 64 respectively.

4) Modes : aqutomatic rofation and aute end of inferrupt.

5) Addresses of the master are 40H and 41H and the slave are 80H and 81H.
&) Buffers are not used.

Initialization command words for Master ICW1 (Master)

ICW1 (master)

A | oAy | As 1 |[LTIM| ADI | SNGL | IC4

a Q 0 1 1 1] 4] 1 = 10H
ICW2 (master)

B, By Bs By By B, B, By

0 0 1 0 1] 0 1] 0 = 20H
ICW3 (master)

Sy Ss Ss S4 Sy S; Sy Sp

0 o 0 0 Q 1 1] a = [4H

Microprocessors and Interfacing B-22 8086 Interrupts

ICW4 (master)

i 0 0 SFNM | BUF | M/S | AEDI | pPM

0 0 0 0 0 0 1 1 = 03H
Program :

MV AL, 1B2H level triggered, cascaded, ICW4 needed

OUT 40H, AL
MOV AL, 20H
oUT 41H, AL
MOV AL, O4H

gend ICWl (master)

type 32 is first BZ259A type
send ICWZ (mastar)

=lave at IRZ

e Wa Wi Wy Ep Eg

oUT 42H, AL send ICW3 (master)

MOV AL, 03H ; ICWd, 8086 mode, and set AEOI

ouT 41H, AL ¢ send ICW4d (master)

MOV AL, 19H ¢ level triggered, cascaded, ICW4 needed
oUT BOH;, AL ¢ send ICW1 (slawve)

MOV AL, 40H type 64 1s first 8259 type

MOV AL, 02H ID for slave connected to IRZ

QUT #1H, AL ;o send ICW3E (slawve)
OuT 81H, AL ¢ send ICWZ (slave)

Mov AL, O0lH ; ICW4, EB2086 mode

oUT 81H, AL ; send ICW4

MOV AL, 8OH ; QCWZ (rotate inm auto EOI mode set command)
OUT BO0H, AL § send OCWZ2 (slave)

8.5.6 B259A Interfacing

FiE. 8.15 shows that how an B259A can be interfaced with the B0864 mi:ruprﬂcﬁiﬂ;:r
system in minimum mode. In case of BOBB microprocessor same interfacing diagram can be
used except M/IO signal. In 8088, M/IO signal is represented by 10/M signal, therefore
this signal is connected to G (active high) signal of decoder to interface B259A in /O
mapped 1/0 mode.

Addressing of B259A :

Ags Agq Agz Az Ay A Ay Ay | A Ay A Ay Ay Ay A Ay Address
1 i 1 1 i 1 1 1 1] | 1 0] X i) FFFOH

—— e S —————————— e Y

F F F 0/2 FFF2H

The 74L5138 address decoder will assert the CS input of the E259A when an 1/0 base
address is FFFOH or FFFZH on the address bus. The A, input of the B259A is used to
select one of the two internal addresses in the device. A of the 8259A is connected to
system line Al. So the system addresses for the bwo internal addresses are FFFOH and
FFF2ZH. The data lines of an 8259A are connected to the lower half of the system data bus,
because the B086 expects to receive interrupt types on these lower eight data lines. RD and
WR signals are connected to the system RD and WR lines. The interrupt request signal

Microprocessors and Interfacing 8-23 B0B6 Interrupts

Ay —— Ver G
— v, b
Address } ©2
bus Ay —
Ay = C T74L5138
Aq -] B
5 —
"!"l:l = A 1 +5 Y
I'(M-'I'D —— 'G1 GND
4 SPIEN Vee
Eml:ml< —4 E :::ﬂ *
b i
RD ~d RD IRy p—
WR =] WR IRy p—
INTR INT IR,
\INTA INTA IRs |—
Dy = Dy 82504 IRg [—
D, = 4 o, IRy |—
Oz Oy CAS, |—=
Data D, = 0, CAS,
bus 0, = Dy CAS, |+—=
':‘El nﬁ
0. =]
& 6
Oy =1 Dy GND

Fig. 8.15 B259A interface to B0B6E system bus

INT from the 8259A is connected to the INTR input of the B086 and INTA from the B0B6 is
connected to INTA on the 8259A. As we are using single 8259A in the system SP/EN pin
is ted high and CASCAS, lines are left open. The eight IR inputs are available for

intﬂrrupt !ii.E_nEl.lﬁ.

Note :
1. Unused IR inputs should be tied to ground so that a noise pulse cannot
accidentally cause an interrupt.

2. In maximum mode RD and INTA signals of B259A are connected to the IORC,
IOWC and INTA lines of 8288 bus controller.

Microprocessors and Interfacing 8-24 BOSE Interrupts

Cascading :

The B259A can be easily interconnected to get multiple interrupts. Fig. 8.16 shows how
8259A can be connected in the cascade mode. In cascade mode one 8259A is conhigured in
Master mode and other should be configured in the Slave mode. In this figure 8259A-1 is
in the master mode and others are in slave mode. Each slave 825%9A is identified by the
number which is assigned as a part of its initialization. Since the 8086 has only one INTR
input, only one of the 8259A INT pins is connected to the 8086 INTR pin. The 8259A
connected directly into the B086 INTR pin is referred as the master. The INT pins from
other B259A are connected to the IR inputs of the master 8259A. These cascaded 825%9As
are referred as slav . The INTA signal is connected to both master and slave B239A.

(See Fig. 8.16 on next page.)

The cascade pins CAS; to CAS, are connected from the master to the corresponding
Friru'. of the slave. For the m:‘iﬁ_tir Eer.u FiI'I:i funchion as outputs, and for the slave these
pins function as inputs. The SP/EN signal is tied high for the master. However it is
gn:l:.mded for the slave.

Each B259A has its own addresses so that command words can be written to it and
status bytes read from it

Addresses for 8259As :

No 1Ais Ay Ay Ag Ay Agg Ay Ag | Ar A Ay A A; Ay Ay |Address
g%0A1 |1 1 1 1 1 1 1 111 11 0 X 0 | FFFOH
3 G F 02 FFF2H

584201 1 1 1 1 1 1 11111 1 X 0 | FFFaH
F F F I FFF&H

2sAd |1 1 1 1 1 1 1 111 11 0 X 0 | FFFBH
F F F BA FEFAH

Master and slave operation :

When the slave receives an interrupt signal on one of its IR inputs, it checks mask
condition and priority of the interrupt request. If the interrupt is unmasked and its priority
is higher than any other interrupt level being serviced in the slave, then the slave will
send an INT signal to the IR input of a master. If that IR input of the master is unmasked
and if that input is a higher priority than any other IR inputs currently being serviced,
then the master will send an INT signal to the 8086 INTR input. If the INTR interrupt is
enabled, the 8086 will go through its INTR interrupt procedure and sends out two INTA
pulses to both the master and the slave. The slave ignores the first interrupt acknowledge
pulse but the master outputs a 3-bit slave identification number on the CAS5;-CAS, lines.
Sending the 3-bit 1D} number enables the slave. When the slave receives the second INTA
pulse from the 8086, the slave will send the desired type number to the 8086 on the eight
data lines.

If an :il"l‘tL"m.lFt signal is app]ir—:d d:in:ctijr to one of the IR mput-t of the master, the
master will send the desired interrupt type to the B0B6 when it receives the second INTA
pulse from the 8086,

Hidden page

Microprocessors and Interfacing 8-26 8086 Interrupts

8.6 Interrupt Example

There are several reasons for wriling interrupl service routine. However, to write such
a interrupt service routine we have set the address of our interrupt service routine in the
interrupt vector table. To set an interrupt vector to a specified address, (starting address of
interrupt service routine) there are two ways :

1. Using function 25H of INT 21H
2. Without using any DOS function.

1. INT21H, Function 25H : Sct Interrupt Address

To set a new inten‘upt address, load the reqwlrud interrupt number in the AL and the
new address in the DX :

MOV AH, Z5H ; Reguest interrupt address
MOV AL, int @ : Imterrupt number

LEA DX, newadd:r { Mew address for interrupt
INT Z1H

The above program replaces the present address of the interrupt with the new address.
In effect, then, when the specified interrupt occurs, processing links to resident program,
rather than to the normal interrupt address.

2. Without using any DOS Function

The DOS function discussed above do nothing more than getting address of interrupt
viector corresponding to an interrupt number and Iuading two words (segment address and
offset address of the interrupt service routine) into it. The address of interrupt vector can
be obtained h:,.' mu]l‘ipl},r'mg the interrupt number b:,' 4. Once we get the address of the
Interrupt vector table we have load the segment address and offset address of the
interrupt service routine.

immp Example 3 : Generate a real time clock by generating a periodic interrupt request signal
on Hie NMI input of 8086.

Solution : Hardware : The Fig. 8.17 shows simple circuit that generates interrupt request
after every 0.5 sec.

AbpF TLOK
I §
= ? 150 4060
14 QP freguenc I
‘L—H + 4 11 3 Equ T
10pF
= Crystal frequency B
JMTE Hz J_

Fig. B.17 Interrupt generation circuit

Hidden page

Microprocessors and Interfacing 8-28 BOBE Interrupts

JNZ DONE
MOV HR,00H ; Reset HR = 00

DONE : POP SI ; restore registers

MOV AH, 0O

IE.ET
TIMES EMNDF
END START

BN

L i

1.
11.
12.
13.
4.
15.
16,
17.
18.

Review Questions~

7. Explain interrigpt structure of 8086.
B, Whatl are sa-ﬂ'rm'n interrupt ! How 8086 responds to softtoare inferrupts 7

Wihat do yon mean by interrupt 7

Wiat s interrupt service rontine *

Wihat are B sowrces of interrupts in 8086 7
Wiat iz interrupt veclor table 7

Drow omd explain the IVT for S086.

Briefly. describe the conditions which cause the 8086 to perform sach of the following types of
interrupts : Type 0, Tupe 1, Type 2, Type 3 and Type 4.

Draw and exploin the interrupt ackmewledge cycle of S086.
Diescribe the response of 8086 fo the interrupt conting on pin.
What do you mean by interrupt priorities 7

State the interrupl priorities for 8086 interrupls.

Wihat are advantages of using 8233 7

List the features of 8259,

Explnin the operating modes of 8259,

Drraw and explein the interfacing of 8259 with 8086.

Drvaw amd explai Hhe interfacing of cascaded 8259 with 8086,

Explain b procedure of interrupt programming.

J4a4a

Introduction to DOS and
BIOS Interrupts

In IBM PC, part of the operating system is located in the permanent memory (ROM)
and part is loaded during power up. The part located in ROM is referred to as
ROM-BIOS (Basic Input/COutput System). The other part which is loaded in RAM during
power-up from harddisk or floppy disk is known as DOS (Disk Operating System).

BIOS is located in an 8K-byte ROM at the top of memory, the address range being
from FEDOOH to FFFFFH. The programs within ROM-BIOS provide the most direct, lowest
level interaction with the various devices in the system. The ROM-BIOS contains routines
for

1. Power-on self test

System configuration analysis
Time-of-day

Print screen

E:_‘H.ﬁl’.,‘il‘rap loader

R U O o

I/O support program for
a. Asynchronous communication
b. Keyboard
c. Diskette
d. Printer
e. Display
Most of these programs are accessible to the assembly-language programmer through

the software interrupt instruction (INT). The design goal for the ROM-BIOS programs is to
provide a device-independent interface to the various physical devices in the system.

(9 -1)

Microprocessors and Interfacing 9.2 Introduction to DOS and BIOS Interrupts

It is seen that ROM-BIOS provides basic low-level services. Using ROM-BIOS one can
output characters to various physical devices like the printer or the display monitor, one
can read characters from keyboard, one can read or write sectors of data to the diskette,
But still few things we can’t do with ROM-BIOS.

1. It is not possible to provide ability to load and execute programs directly.
2. It is not possible to store data on the diskette organized as logical files,

3. ROM-BIOS has no command-interpreter to allow us to copy files, print files, delete
files.

It is DOS that provides these services. When we turn our computer ON, we expect to
se¢ a message or a prompt. We excepl to be able to look at the diskette directory to see
what data files or programs the diskette contains. We expect to run a program by typing
its name. We want to copy programs from one diskette to another, print programs, and
delete programs. All these services are provided by group of programs called DOS. The
services provided by DOS can be grouped into following categories.

1. Character Device WO : This group includes routines that input or output characters
to character oriented devices such as the printer, the display monitor, and the keyboard.

2. File Management : This group includes routines that manage logical files, allowing
you to create, read, write and delete files.

3. Memory Management : This group includes routines that allow us to change,
allocate, and deallocate memory.

4. Directory Management : This group includes routines that permit us to create,
change search, and delete directories.

5. Executive Functions : This group includes routines that allow us to load and execute
programs, to overlay programs, to retrieve error codes from completed programs, and to
execute commands.

6. Command Interpreter : This routine is in action whenever a prompt is present on the
screen. It interprets commands and executes DOS functions, utility programs, application
programs, depending upon the command.

7. Utility Programs : These programs facility to copy, delete provides the DISKCOPY,
DIR and many other DOS commands.

Hidden page

Microprocessors and Interfacing 9-4 Introduction to DOS and BIOS Interrupts

int 21H - Direct console /O Function 06H

Used by program that need to read and write all possible characters and control codes
without any interference from the operating system.

Reads a character from the standard input device or writes a character to the standard
output device. [/0O may be redirected.

Calling parameters

AH = 0GH
DL = function rEqﬁEEted
O00H-FEH if output reguest
OFFH if input request
Returns : Nothing, if ecalled with DL = 00H-O0FEH
If called with DL = FFH and a character is ready returns
Zero flag = clear
AL = B=bit input data
If called with DL = FFH and no character is ready

iero _flag = set

int21H Unfiltered character input without echo Function 07H

Reads a character from the standard input device without echoing it to the standard
output device. If no character is ready, waits until one is available.

Calling Parameter
AH = 07H

Returns
AL = 8-bit 1input data

Example : Read a character from the standard input without echoing it to the display,
and store it in the variable char.

char de O ; input character
mow ah; 7 i function number
int 21h i transfer to M5-DOS
moY char,al { sawve character

Hidden page

Microprocessors and Interfacing 9-6 Introduction to DOS and BIOS Interrupts

If the buffer fills to one fewer than the maximum number of characters it can hold,
subsequent input is ignored and the bell is sounded until a carriage return is detected.

Example : Read a string that is maximum of 80 characters long from the standard
input device, placing it in the buffer named buffer

buffer dbe 81 ; maximum length of input
de 0 i actual length of input
db Bl dup (0) ; actual input placed here
mov ah, Dah ; Function npumber
mov dx;s5eg3 buffer ¢ input buffer address

mov ds,dx
mov dx,offaet buffer
int 21h : transfer to MS=-DOS

Int 21H Check input status Function 0BH (11)

Checks whether a character is available from the standard input device.

Calling Parameter
AH = 0BH

Returns
AL = 00H if neo character is available

FFH if at least one character is available
Example : Test whether a character is available from the standard input.

mov ah, 0bh 7 function on number
int 21h ; transfer to MS-DOS
or al,al i character waiting?

jnz awvail ; jump if char available

Microprocessors and Interfacing 9.7 Introduction to DOS and BIOS Interrupts

Int21H Flush input buffer and then input Function 0CH (12)

Clears the standard input buffer and then invokes one of the character input functions,
Input can be redirected.

Calling parameters

AH = O0OCH
AL = number of input function to be invoked
after resetting buffer (must be O01H;, O&H,
D7H, 08H, or 0AH)
{1f AL = OAH)
D5:0¥ = segment:offset of input buffer

Returns : (if called with AL = 01H, 06H, 07H, or 08H)
AL = &=bit input data
(if called with AL = DAH)
Nothing (data placed in buffer)

9.2 Character Display Functions

Int 21H Character output Function 02H

Outputs the character to the standard output device.

Calling Parameters
AH = BZ2H
oL = B=bit data for output
Returns : Nothing

Example: Send the character “*” to the standard output device.

mov ah, 2 i function number
mov dl,"*’ ;i character to output
int 21h ; transfer to MS-DOS
Int 21H Display string Function 09H

Sends a sitring of characters to the standard output device. End of siring is indicated
by character $ (24H).

Microprocessors and Interfacing 9-8 Introduction to DOS and BIOS Interrupts

Calling Parameters
AH
DS

09H
segment ioffset of string

Returns : MNothing

Example : Send the string, followed by a carriage return and line feed, to the standard
output device,

cr egu 0dh

1£ aegu Oah

msg ap ‘MICROFROCESSOR® ,cr, 1f," 57

mav ah, 09h ; function numbar
mov dx, seg msg ; address of string
mov ds, dx

moy dx;offset msg

int 21h s transfer to MS-DOS

9.3 File Control Block Functions

Int 21H Open file Function OFH (15)

Opens a fle and makes it available tor subsequent read /wrile operations.

Calling Parameters
AEH = OFH
D5:DX = segment ;offset of file control block

Returns :
If function successful (file found)
&L - 00OH
and FCB filled in by MS-DOS as follows :
drive field {offset 00H) 1 for drive A, 2 for drive B, etc.
current block field (offset OCH) 00H
record size field (offset DEH) D080H
[2.0+] size field (offset 10H) file size from directory
[2.0+] date field (offset 14H) date stamp from directory
[2.0+] time field (offset 16H) = time stamp from directory

If function unsuccessful (file not found)
AL = FFH

i

Hidden page

Microprocessors and Interfacing 9-10 Introduction to DOS and BIOS Interrupts

moy ds, dx

mov dx, offset myfch

int 2lh ;i transfer to MS-DOS
nr al, al »r check status
jnz error s Jump if close failed
Int 21H Delete file Function 13H (19)

Deletes all matching files from the current directory on the default or specified disk

drive.
Calling parameters
AH = 13H
D5:0DX = segment:offset of file control block

Returns :
If function successful (file or files deleted)
AL = 00H

If function unsuccessful (no matching files were found, or at least one matching file
was read-only)

AL = FFH
Example :
Delete the file TEST.DAT from the current disk drive and dirﬂftﬂl‘}-‘-

myfchk db O i drive = default
db YTEST" y filename, B characters
dk "DAT ¢ extension, 31 characters
db 25 dup (0) ; remainder of FCB
mav ah, 13h ; function number
mov dx, seg myfch i addressz of FCB

moy ds, dx

mov dx,offset myfch

int Z1h i transfer to MS-D0OS
or al,al : check status

jnz error i Jump if close failed

Microprocessors and Interfacing 9-11 Introduction to DOS and BIOS Interrupts

Int 21H Sequential read Function 14H (20)

Reads the next sequential block of data from a file, then increments the file pointer
appropriately.
Calling parameters

AH = 14H
DS : DX

segment:offset of previously opened file

control bBlock

Returns

AL = 00B if read successful
D1H if end of file
DiH 1f segment wrap

03 if partial record read at end of file

Example : Read 512 bytes of data from the file specified by the previously opened file
control block myfcb.

myfch Adb 0 ; drive = default
db ‘TEST' i filename, 8
; characters
dh ‘DAT' ; extension, 3
i characters
dhb 25 dup (0] ¢ remainder of FCB
mov ah, 14h { function number
mov dx,seg myfch ¢ addreza of FCB
mow ds, dx
mov dx,offset myfch 7 set record size
mow word ptr myfcb+0eh,512
int 21h { tranafer to ME-DOE
or al,al § Check Status
jnE error § jump if read failed
Int 21H Sequential write Function 15H (21)

Writes the next sequential block of data from a file, then increments the file pointer
appropriately.

Hidden page

Microprocessors and Interfacing 9-13

Introduction to DOS and BIOS Interrupts

and FCB filled in by M5-DO5 as follows

drive field (offset O0H) =

current block field (offset OCH)
record size field (offset OEH)
[2.0+]size field (offset 10H)
[2.04]cate field (offset 14H)
[2.04] time field (offset 16H)

-

1 for drive A, 2 for drive B, etc.
D0H

= DOSOH

file size from directory
date stamp from directory
time stamp from directory

If function unsuccessful (directory full)

AL = FFH

Example : Create a file in the current directory using the name in the file control block

myfch.
my£ch db 0 ¢ drive = default
db ‘TEST' ; filename, B characters
dio "DAT ; extensicn, 3 characters
db 25 dup (0} ; remainder of FCB
mov ah, 16h ; function number
mov dx,segqg myich : address af FCB
mav ds, dx
mov dx,offset myfchk
int 21h ;i transfer to M53=D05
or al, al ;i check status
inz error ! Jump if create failed
Int 21H Rename file Function 17H (23)
Alters the name of all matching files in the current directory on the disk in the
specified drive.
Calling parameters
AH = 17H
D5:D0X = segment:offset of “special” file control

block

Returns : If function successful (one or more files are renamed)

AL = OOQH

If function unsuccessful (no matching files, or new filename matched an existing file)

AL = FFH

Microprocessors and Interfacing 9-14 Introduction to DOS and BIOS Interrupts

Example : Rename the file DAT to NEWNAME.DAT.

myfehb de O ;o odrive = default

db "OLOHAME” y old file name, 8 characters
db *DATT ; old extension, 23 characters
dbs & dup (0} ; reserved area

db "HEWNAME " ; new file name, 8 characters
dbx "DAT' ¢ new extension, 23 characters
db 14 dup (D) ; keserved area

mov ah,17h i function number

mow dx,seg myfcbh : address of FCB

mov ds,dx
mov dx,offset myfch

int 2lh i tranzfer to M5=DOS
or al,al ; check status
Nz error ; Jump if close failed
Int 21H Get file size Function 23H (35)

Searches for a matching file in the current directory; if one is found, updates the FCB
with the file's size in terms of number of records.

Calling Parameters :

AH = Z3H
DS:DX = segment: offset of unopened file control
block

Returns : If function successful (matching file found)
AL = 0QO0H
and FCB relative-record field (offset 21H) set to the number of records in the file.

If function unsuccessful {no matching file found)

AL = FFH
Example : Determine the size in bytes of the file MICRO.DAT
myfch db Q ;i drive : default
db MICROS ; filename, & chars
db ‘DAT’ ; extension, 3 chars

db 25 dup (0} ; remainder of FCB

Hidden page

Microprocessors and Interfacing 9-16 Introduction to DOS and BIOS Interrupts

If function failed
Carry flag = set

AX = egrror code

Example : Create and open,or truncate to zero length and open, the file

C:WHMBELZPROL.ASM and save the handle for subseguent
access to the file.

fname dh *C:A\MBS\PRO1.ASM", 0
fhandle dw 7
mov ah, 3ch H function number
KOT CH,CH H normal attribute
moy dx,seqg fname H address of path name

moy ds, dx
mov dx,offset fname

l“.t 21h H tranafer to M53-D0OS
je error ; jump if create failed
mow fhandle, ax H save file handle
Int 21H Open file Function 3DH (61)

Opens the specified file in the designated or default directory on the designated or
default disk drive. A handle is returned which can be used by the program for subsequent
access to the file.

Calling Parameters

AH = 3DH
AL = asges: mode
Bitis) Significance
O=2 access mode
000 = read access
001 = write access
L1d = read/wrike access
K reserved ()
J=n sharing mode (MS-D0OS wveraions 3.0

and later)

000 = cgompatibility mode
00y = dany all
d17 = deny write

L T

Microprocessors and Interfacing 9.17 Introduction to DOS and BIOS Interrupts

011 = deny read
100 = deny none
7 inheritance flag (M5=DOE& wersions 3.0
& later)
0 = child process inherits handle

1l = child does not inherit handle
D5:DX = segment:ocffzet of ASCII path name

Returns : [If function successful

Carry flag = clear
AX¥ = handle
If function unsuccessful
Carry flag = szet
AX = grror code

Example : Open the fle CA\APROLASM for both reading and writing, and save the
handle for subsequent access to the file.

fname ik TCoAMESNEROL L ASMT 0

thandle dw ?
mov ah, 3dh H function number. -
mov al,02h ; mode - read/write
may dx, seq fname ; address of path npame

mov ds,dx

mov dx,o0ff=et fname

int 21H ; transfer to MS5-DOS
e error H jump 1f open failed
fhandle, ax 7 SaL handle
int 21H Close file Function 3EH (62)

Given a handle that was obtained by a previous successful open or create operation,
Hushes all internal buffers associated with the file to disk, closes the file, and releases the
handle for reuse. If the file was modified, the time and date stamp and file size are
updated in the file's directory entry.

Microprocessors and Interfacing 9-18 Introduction to DOS and BIOS Interrupts

Calling Parameters
AH = 3EH
BX = handle
Returns : [f funchion successful
Carry flag = clear
If function unsuccessful
Carry flag = set
AX = error code
Example : Close the file whose handle is saved in the variable fhandle.
fhandle dw 0

mov ah, deh i function number
mov b, fhandle - file handle
inte 21h : transfer to MS=DO3
jc BEEGE i jump if close failed
oy
Int 21H Read file or device Function 3FH (63)

Civen a valid file handle from a previous open or creale operation, a buffer address,
and a length in bytes, transfers data at the current file-pointer position from the file into
the buffer and then updates the file pointer position.

Calling Parameters
AH = 3FH
BX = handle
CX = pumber of bytes to read
D5:DX = segment:offset of buffer

Returns : If function successful
Carry flag = clear
AX = bytes transferred
If function unsuccessful
Carry flag = set
AX = error code

Example : Using the file handle from & previous open or create operation, read 512
bytes at the current file pointer into the bufier named bulff.

Microprocessors and Interfacing 9-19 Introduction to DOS and BIOS Interrupts
buff db 512 dup (?) ; buffer for read
fhandle dw T contains file handle
mov ah; 3fh i function number
mow dx, seg buff ; buffer address
mov ds, dx
mov dx, offset buff
mov bx, fhandle ; file handle
mov ox, 512 : length to read
int 2lh transfer to MS-DOS
e Brror ; jump, read failed
CWE ax, Cox i check length of read
71 done ; Jjump, end of file
int 21H Write file or device Function 40H (64)

Given a valid file

handle from a previous open or create operation, a buffer address,

and a length in bytes, transfers data from the buffer into the file and then updates the file

puinter position.
Calling parameters
AH
BX

CX
DS:DX

Returns : [f funclion
Carry flag
BX

40H

handle

number of bytes to write
segment ;offset of buffer

successful

= clear
bytes transferred

If function unsuccessful

Carry flag
AX

Example : Using the

set
= error code

handle from a previous open or create operation, write 512 bytes to

disk at the current file pointer from the buffer named buff.

Hinrug:mmuqir; and Interfacing 89-20 Introduction to DOS and BIOS Interrupts

buff - b 512 dup (7) s buffer for write
fhandle +xp " 7 ; contains file handle
mow ah, 40h ¢ Function number

mov dx; seg buff ; buffer address
mov ds, dx
mov dx, offset buff

mov bx, fhandle ; file handle
mov cx, ol12 ; length to write
int Z1h i transfer to MS-DOS
1c Brror ¢ Jjump, write failed
cmp ax, 512 ; entire record written?
jne error 7 one, Jjump
int 21H Delete file Function 41H (65)

Deletes a file from the specified or default disk and directory.

Calling Parameters
AH = 41H
D5:0X = segment:offset of ASCIIZ pathname
Returns : If function successful
Carry flag = clear
If function unsuccessful
Carry _flag = set

AX = grror code

Example : Deletethe file named MICRO.DAT from the directory \MYDIE on drive C.

fname db *C:AMYDIR\MICRO.DAT", 0
mov ah;41h ¢ function number
mov dx, seg fname i filename address

mov ds,dx

mov dx,offset fname

int 21h ¢ transfer to MS-DOS

98 @rror ; Jump Lf delete failed

Microprocessors and Interfacing 9-1 hundunﬂmhﬂﬂﬂﬁdﬁbﬂlnhnuph

INT 21H Move file pointer Function 42H (66)

DOS maintains a file pointer. The open file operation initialize file pointer to 0 and
subsequent sequential reads and writes increment file pointer by record.

Calling parameters

AH = 42ZH

AL method code
00H absolute offset from start of file
01H signed offset from current file pointer
02H signed offszet from end of file

BX = handle

CX = most significant half of offset

DX = least signficant half of ocffset

Returns : If function successful

Carry flag = clear
DX = most significant half of resulting file
pointer
A¥ = least significant half of resulting file
pointer

If function unsuccessful
Carry flag = set
AX = arror code

Int 21H Rename file Function 56H (86)

Renames a file and/or moves its directory entry to a different directory on the same
disk, In MS-DOS version 3.0 and later, this function can also be used to rename directories.

Calling parameters
AH S6H
DS: = segment:offset of current ASCIIZ pathname

E5:DI = segment:offset of new pathname

Returns : If function successful
Carry flag = clear
If function unsuccessful
Carry flag = set
AX = grror code

Microprocessors and Interfacing 9-22 introduction to DOS and BIOS Interrupts

Example : Change the name of the file MYFILE.DAT in the directory \MYDIR on drive
C to MYTFXT.DAT. At the same time, move the file to the directory \SYSTEM on the
same drive.
aldname db ‘Cr\MYDIR\MYFILE.DAT' , D i drive = default
newnames db YCrASYSTEMA\WMYTEXT.DAT' , 0

mov ah, 5S6&h ¢ functicon number

mov dx, seg oldname ; old filename address
mov ds, dx

mov dx, offset oldnamea

mav di, seqg newname i new filename address
moy es, di

mov di, offset newname

int 21h ¢ transfer to MS=DOS
jo error i jump if rename
; failed

9.5 Memory Management Functions

int 21H Allocate memory block Function 48H (72)

Allocates a block of memory and returns a pointer to the beginning of the allocated
area.

Calling parameters :
AH = 48H
BX = number of paragraphs of memory needed

Returns : If function successful
Carry flag = clear
AX = base segment address of allocated block
If function unsuccessful
Carry flag = set
AX = error code
= gize of largest available block
(paragraphs)

Example : Request a 64 KB block of memory for use as a buffer.

bufseg dw 7 : segment base of new block

Microprocessors and Interfacing 9-23 Introduction to DOS and BIOS Interrupts

mov ah, 48h s function number

mov bx, 1000h s block size (paragraphs)

int 21lh i transfer to MS5-DOS

je error s Jump if alleocation failed

mov bufseg, ax { =zave segment of new block
Int 21H Release memory block Function 49H (73)

Releases a memory block and makes it available for use by other programs.
Calling parameters :

EBH = 45H
ESZ = segment of block to be released

Returmns : If function successful

Carry flag = clear
If function unsuccessful
Carry flag = set

AX = arror code

Example : Release the memory block that was previously allocated in the example for
21H Function 48H.

bufseg dw ? ; segment base of block
mov ah, 490 ¢ functicn number
mavy es,bufseg ; base szegment of block
int 21h { transfer fto M3=-DOS
¢ error i jump if release failed
Int 21H Resize memory block Function 4AH (74)

Dynamically shrinks or extends a memory block, according to the needs of an
application program.

Calling parameters :
AH = 4AH

desired new block size in paragraphs
segment of block to be modified

ES

Hidden page

Microprocessors and Interfacing 9-25 Introduction to DOS and BIOS Interrupts

Int 15H Get extended memory size Function 88H(136)

Returns the amount of extended memory installed in the system

Calling parameters :
AH = &8H

Returns :
AX = amount of extended memocry {(in EB)

9.6 Display Functions Provided by ROM BIOS

Int 10H Set video mode Function 00H

Selects the current video diﬁplay mode. Also selects the active video controller, if more
than one video controller is present.

Calling Parameters

AH = DOH
AL

vidego modes

Retumms MNothing

Different Video Modes

Mode Resolution Colors Text/graphics

00H 40-by-25 18 Mt
color burst off

01H 40-by-25 16 et

02H BO-by-25 16 text
eolor burst off

03H BO-bry-25 16 el

04H 320-by-200 4 graphics

05H 320-by-200 4 graphics
color burst off

06H B40-by-200 2 graphics

0O7H BO-by-25 2 teat

08H 160-by-200 16 graphics

Microprocessors and Interiacing 9-26 Introduction to DOS and BIOS Interrupts

DAk | 320-by-2060 | I 16 i graphics
0AH I E40-by-200 4 graphics
J2H reserved

DCH ! resarved

ooH ! 320-bry-200 16 graphics
NEH B O-bry-200 16 graphics
OFH I B4 O-byy-350 2 graphics
10H ! B4 0i-by-350 4 graphics
10H G4 0-by-350 16 graphics
11H G4 0-by-480 2 graphics
12H 640-byd80 16 graphics
13H 320-by-200 256 graphics

int 10H Set cursor type Function 01H

Selects the starting and ending lines for the blinking hardware cursor in text display

modes,

Calling Parameters :

AH

CH bits 0-4
CL bits 0-4

01H
starting line for cursor
ending line for cursor

Note : Cursor can be disabled by setting CH = 20H

Returns : Nothing

Int 10H

Set cursor position Function 02H

Positions the cursor on the display, using text coordinates.
Calling Parameters :

AH
BH
CH
DL

Returns : Nothing

02H

page

row (y coordinate)
column (x coordinate)

Microprocessors and Interfacing 9-27 Introduction to DOS and BIOS Interrupts

Int 10H

Get cursor position Function 03H

Obtains the current position of the cursor on the display, in text coordinates.

Calling Parameters :
AH
BH

CH
CL
DH
DL

03H
page

starting line for cursor
ending line for cursor
row (v coordinate)
calumn (¥ coordinate)

Int 10H Read character and attribute at cursor Function 08H

Writes an ASCI character and its attribute to the dinpla}r at the curfent cursor

position.

Calling Parameters :
AH
AL
BH
BL
CX

Returns : Nothing

OBh

character

page

attribute (text modes}) or color
{graphics modes)

count of characters to write
(replication factor)

int 10H

Write character at cursor Function 0AH (10)

Writes an ASCII character to the display at the current cursor position. The character
receives the attribute of the previous character displayed at the same position.

Calling Parameters :
AH
AL
BH
BL
CX

Returns : Nothing

OAH

character

page

calor

count of characters to write
(replication factor)

Hidden page

Microprocessors and Interfacing 9-29 Introduction to DOS and BIOS Interrupts

mov ah,5 ¢ function number
mov dl,**r ; character to output
int 21h ; transfer to M5-DOS
Int17H Write character to printer Function 00H

Sends a character to the specified parallel printer interface port and returns the current
status of the port.

Calling parameters :

AH = 00H

AL = character

DX = printer number (0 = LPT1, 1 = LPTZ,

2 = LPT3)
Returns :

AH = status
Bit Significance (if set)
0 printer timed-out
1 unused
2 unused
3 I/0 errcor
4 printer selected
5 out of paper
L printer acknowledge
7 printer not busy

int17H Initialize printer port Function 01H

Initalizes the s'.pe(:iﬁed parallul printer interface port and returns its status.
Calling parameters :

AH = (1H
DX = printer number (0 = LPT1, 1 = LPTZ,
£ = LPT3)
Returns :
AH = status (zee Int 17H Function QOH)

Microprocessors and Interfacing

9-30 Introduction to DOS and BIOS Interrupts

Int 17H

Get printer status Function 02H

Returns the current status of the specified parallel printer interface port.

Calling parameters :
AH
DX

Returmns :
aH

0z2H

printer number (0 = LPT1, 1 = LPTZ,
2 = LPT3)

status [(sea Int '17H Function OQO0H)

Qag

Serial Communication

Most of the microprocessors are designed for parallel communication. In parallel
communication number of lines required to transfer data depend on the number of bits to
be transterred. For example, to transfer a byte of data, 8 lines are required and all 8 bits
are transferred simultaneously. Thus for transmitting data over a long distance, using
parallel communication is impractical due to the increase in cost of cabling. Parallel
communication is also not practical for devices such as cassette tapes or a CRT terminal. In
such situations, serial communication 15 used. In serial communication one bit is
transferred at a lime over a single line.

To imp]ument sorial communication in the micrucumpul.‘e.r svstem, ib is necessary o
understand the basic concepts of serial communication. The following section describes the
basic concepts involved in serial communication.

Basic concepts :
1. Classification
. Transmiszion formals
. Data communication over telephone lines

2
3
4. Error detection
5. Interfacing requirements
[V

. Serial communication standards.

10.1 Classification
Serial data transmission can be classified on the basis of how transmission occurs.
1. Simplex
2. Half duplex
3. Full duplex

10.1.1 Simplex

In simplex, the hardware exists such that data transfer takes place only in one
direction. There is no possibility of data transfer in the other direction. A typical example
is bransmission from a computer to the printer.

(10 - 1)

Microprocessors and Interfacing 10-2 Serial Communicatior

10.1.2 Half Duplex

The hall duplex transmission allows the data transfer in both directions, bul no
simultaneously. A typical example is a walkie-talkie.

10.1.3 Full Duplex

The full L‘lLI'FI].L*I transmission allows the data transfer in both direction ﬁlmu]!ﬂnei.:ul.ual}-l
The typical example is transmission through telephone lines.

10.2 Transmission Formats

The data in the serial communication may be sent in two formats :

a) Asynchronous b} Synchronous

10.2.1 Asynchronous

Fig. 10.1 shows the transmission format for asynchronous transmission. Asynchronou
formats are character oriented. In this, the bits of a character or data word are sent at ;
constant rate, but characters can come at any rate (asynchronously) as long as they do no
overlap. When no characters are being sent, a line stays high at logic 1 called mark, logic |
15 called space. The beginning of a character is indicated by a start bit which is alway;
low. This is used to synchronize the transmitter and receiver. After the start bit, the dat
bits are sent with least significant bit first, followed by one or more stop bits (active high)
I'he stop bits indicate the end of character. Different systems use 1, 1 1/2 or 2 stop bits
Mhe combination of start bit, character and stop bits is known as frame. The start and stog
bils carry no information, but are required because of the asynchronous nature of data
Fig. 10.2 illustrates how the data byte CAH would look when transmitted in the

asvichromous serial format.

Marking
=
Transmier & |Po|D4|Dz| Dy | Dy | Ds | Dg | Dy shtlﬂhp Receiver
l———— ASClI |
CLK characters CLK
Time

Fig. 10.1 Transmission format for asynchronous transmission

.1
Start bit Stop bit
E 1 1jo0 ol1joli1]o
Transmitter Recaiver
— {1 Frameg
Tima

Fig. 10.2 Asynchronous format with data byte CAH

Microprocessors and Interfacing 10-3 Serial Communication

IThe data rate can be expressed as bits/sec. or characters/sec. The term bils/sec is also
called the baud rate. The asynchronous format is generally used in low-speed transmission
(less than 20 Kbits/sec).

10.2.2 Synchronous
The start and stop bits in each

J' . | frame of asynchronous format

represents wasted overhead bytes

N Sy | Syne - that reduce the owverall character
rartsmiar .

T R rate, These start and stop bits can

e — be eliminated by synchronizing

receiver and transmitter, Thle}' can

Fig. 10.3 Synchronous transmission format be synchronized by having a
common clock signal. Such a

communication is called synchronous serial communication. The Fig. 10.3 shows the
transmission format of synchronous serial communication. . In this transmission
synchronous bits are inserted instead of start and stop bits.

ar. No. Asynchronous Serial Communication Synchronous Serial Communication
1. Transmitters and receivers are nob| Transmitter and receivers are synchronized by
synchronized by clock. clock,
2. Bits of data are transmilted al constant rate. Data bits are transmitted with synchronisation
of clock.
3. Characler may arrive al any rabe al receiver. Character is received at constant rate.
4, Data transfer i character origntad. Date transfer takes place in blocks.
A Siart and stop bits are required to establsh| Stad and slop bils are notl reguired 19
communicalion of each characier astablish communication of each characier;
however, synchrontsation bis are required 1o
transfer the data block,
B. Used in low-spead lransmissions at aboul| Used in high-speed tramamissions
spead less than 20 kbita/sec,

Table 10.1 Comparison between asynchronous and synchronous serial data transfer

10.3 Interfacing Requirements

To implement serial communication in microprocessor system we need basically twao
devices :

1} Parallel to serial converter 2) Serial to parallel converter,

To transmit byte data it is necessary to convert byte into eight serial bits, This can be
done by using the parallel to serial converter. Similarly at the reception these serial bils
must be converted into parallei 8 bit data. The serial to parallel converter is used to
convert! sertal data biks into the !.'.IEl.n'I"E_*t dalta.

Microprocessors and Interfacing 10-4 Serial Communication

The devices are designed for his purpose are called universal asynchronous
receiver-transmitter (UART). The devices which provides synchronous as well as
asynchronous transmission and reception are called as universal synchronous
asynchronous receiver-transmitter. A good example of UART is 8250 and USART is 8251.
These devices are software programmable for number of data bits, parity and number of
stop bits. In the next sections, we discuss the 8251 (USART).

10.4 USART 8251

To implement serial communication in microprocessor system we need basically two
devices : 1) Parallel to serial converter

2) Serial to parallel converter.

To transmit byte data it is necessary to convert byte into eight serial bits. This can be
done. by using the parallel to serial converter. Similarly at the reception these serial bits
must be converted into parallel 8 bit data. The serial to parallel converter is used to
convert serial data bits into the parallel data.

The devices are designed for this purpose are called universal asynchronous
receiver-transmitter (UART). The devices which provides synchronous as well as
asynchronous transmission and reception are called universal synchronous asynchronous
receiver-transmitter. A good example of UART is 8250 and USART is B251. These devices
are software programmable for number of data bits, parity and number of stop bits. In the
next section we discuss IC 8251 (USART).

10.4.1 Features

1. The Intel 8251A is an universal synchronous and asynchronous communication
controller.

2. It supports standard asynchronous protocol with :
a) 5 to B Bit character format

b) odd, even or no parity generation and detection
¢) Baud rate from DC to 19.2 Kbaud
d) False start bit detection
e) Automatic break detect and handling
f) Break character generation.
3. It has built in baud rate generator,

4. It supports standard synchronous protocol with :
a) 5 to 8 Bit character format

b) Internal or external character synchronization
<) Automalic sync insertion
d) Baud rate from DC to 64 Kbaud

Microprocessors and Interfacing 10-5 Serial Communication

5. It allows full duplex transmission and reception.

6. It provides double buffering of data both in the transmission section and in the
receiver section.

7. It provides error detection logic, which detects parity, overrun and framing errors.
8. It has Modem Control Logic, which supports basic data set control signals.

9. It provides separate clock inputs for receiver and transmitter sections, thus
providing an option of fixing different baud rates for the transmitter and receiver
section.

10. It is compatible with an extended range of Intel microprocessors.

11. It is fabricated in 28 pin DIP package and its all inputs and outputs are TTL
compatible.

12. It is available in standard as well as extended temperature range.

10.4.2 Pin Diagram of 8251A
Fig. 10.4 shows the pin diagram of 8251A.

—

D [1o,
Dy] |10,
R [mE
o[] &C
Dy [] oTR
O]] TS
Dy] oER
O, E s A [| RESET
Tl] LK
WA o
os[] [] eEmpty
Cio [mlEs
RO || SYNDET /B0
ReROY [[] TxROY

Fig. 10.4 Pin diagram of 8251A

Data Bus : Bi-directional, tri-state, 8-bit Data Bus. This pin allow transfer of bytes
between the CPU and the 8251A.

RD (Read) : A low on this input allows the CPU to read data or status bytes from
8251A

WR (Write) : A low on this input allows the CPU to write data or command word to the
B251A.

Hidden page

Microprocessors and Interfacing 10-7 Serial Communication

TxC (Transmitter Clock) : This clock input controls the rate at which the character is to
be transmitted.

Receiver Signals

RxD (Receiver Data) : This input Teceives a curnpuﬁil:l_- serial stream of data on the
rising edge of RxC.

RxRDY (Receiver Ready) : This output indicates that the 8251A contains a character
that is ready to be input to the CPLUL

RxC (Receiver Clock) : This clock input controls the rate at which the character is to b
received.

SYNDET (Sync Detect)) BRKDET (Break Detect)

This pin is used in synchronous mode for detection of synchronous characters and
may be used as either input or output.

In asynchronous mode this pin goes high if receiver line stavs low for more than 2
character times. [t then indicates a break in the data stream.

When used as an :il'l'l.'ll,:lt [external Sy detect mode) a Fi'l-:'i:it'i'l.'l’. LLTE'L will cause the
B251A to start receiving data characters on the rising edge of the next RXC.

10.4.3 Block Diagram

Fig. 105 shows the block diagram of IC 8251A. It includes : Data bus buffer,
Read /Write control logic, modem control, Transmit buffer, Transmit Control, Receiver
Buffer and Receiver control.

-
Crata Transmit
DyDp : } bus {: " :'1:}. buffer b—= TxD
bifer (P-5j
RESET ———o I : :
CLE ———
. —= TxRDY
'l':-'l.'-l mml Tranzmii
RD logic control | E
WH fe— T
=
OSR Receive
DR l-l:u:l-rn ﬁ buMfer fe— RxD
=75 r::D (5-P)
RTE
data bus = R [PR
ata bus | | FRecewe —
contral — Rt
sy =S YNDET

Fig. 10.5 Block diagram

Image
not
avallable

Hidden page

Microprocessors and Interfacing 10-10 Serial Communication

1. Mode instruction 2. Command instruction

Mode Instruction @ Fig. 10.6 shows the mode instruction format.

Or 1P O]]%]P0 |%| [Faudrate factor
'--_—-_H"_,_--_.-l'\-.__-.‘_h o e e R — —-':r_-_ﬂﬂ—"- TN I'nl:ldl:
L 0o1—ASYNx1
10—=AS5YM=16
11 == ASYN=64
Character length
00—=5 bits
ASYN (DD # 00) 01— bits
10=—=T hits
11 —=4 bits
Framing contral Parity control
00 —=Not vaiid X—=No
01 —=1 stop bit a1 —.-{}mpap.:?w
10—=1%stop bits 11 —=Even parity
11 —=2 siop bils

Fig. 10.6 Mode instruction format

The instruction can be considered as four 2-bit fields. The first 2-bit feld (D,-Dy)
determines whether the USART is to operate in the synchronous (00) or asynchronous
mode. In the asychronous mode, this field determines the division factor for clock to
decide the baud rate. For example, if [, and D, are both ones, the RxC and TxC will be
divided by 64 to establish the baud rate.

The second 2-bit field {(D,-D.) determines number of data bits in one character. With
this 2-bit field we can set character length from 5-bits to 8 bits.

The third 2-bit field, (Ds-D,), controls the parity generation. The parity bit is added to
the data bits only if parity is enabled.

The last field, (D--D;). has two meanings depending on whether operation is to be in
the synchronous or asynchronous mode. For asynchronous mode, (Le. Dy D, = 00), it
controls the number of STOP bits to be transmitted with the character. In synchronous
mirde, (ie. D,Dy) = 00) this field controls the synchronizing process. It decides whether to
operate with external synchronization or internal synchronization and whether to transmit
single synchronizing character or two synchronizing characters.

Command Instruction

After the mode instruction, command character should be issued to the USART. It
controls the operation of the USART within the basic frame work established by the mode
instruction. Fig. 10.7 shows command instruction format.

It does function such as : Enable Transmit/Receive, Error Reset and modem control.

Microprocessors and Interfacing 10 -11 Serial Communication
D Dy Dy DO, Dy Oy Dy DOy
EH IR | RTS | ER SE.FL'KI RxE | OTR |TxEM
Enabds hund mioda® Transmil anabile
1 = Enable search for 1 = Enabile
syne characiers 0 = Desable
Inl:_arnm "MI Data terminal ready
1=R | 1 = Enabla DTR
B251 {0 mode
Requast 1o sand Recens snsbie
1 = Enabie RTS 1 = Enable
0 = [usabie
Errar Resei Send break charactar
1 = Resal error Negs 1= Foroes TxD "Low™
PE.OEFE 0 = Normal cparation
“{Has no affect in Async mode)

Hote : Ermor resed must be parformed wheanaver
RX enabde and arilas hwunl ane programmed

Fig. 10.7T Command instruction format
10.4.5 8251A Status Word

In the data communication systems it is olten necessary to examine the “status” of the
transmitter and receiver. It is also necessary for CPU to know if any error has occured
during communication. The B251A allow the programmer to read above mentioned

information from the status register any time during the functional operation. Fig. 10.8
shows the format of status register.

Dy D Dy Dy Dy o, B, By
SYMRDET!
I SR BRKDET FE OE | PE | T=EMPTY |R=RDY| T= P.I:ﬁ"l

L.

Mote 1
Same delinilions as 1O pins

Parity Error

The PE flag Is sat whan a parity emor is
debecied. IS resat by 1ha ER bil of the
command instruction, PE does not imhikat
cperaton of the B2518

Overrun Error
Tha QE flag is set whaen the CPU does
nat read 8 characiar bafore the next one

eoomes avaidable. It is resel by the ER
bl of the command insirection. OE does

not inhibit operation of the B261 A. Howewer,
thie previously overmun character is losk.

Framing Error (Asyno only)

The FE flag is sel when a valid siop bit is nod
detected at the end of every characher it is
rasat by the ER bit of the command instnac-
tion. FE does nod inhibit the cperation of the
B251A

Data set ready:
Indicatas that the DSR is at a zero level,

Fig. 10.8 Status register format

Microprocessors and Interfacing 10-12 Serial Communication

Errer Definitions

Parity Error : Al the time of fransmission of data an even or odd parity bit is inserted in
the data stream. At the receiver end, if parity of the character does not match with the
pre-defined parity narity error occurs.

Overrun Error : In the receiver section received character is stored in the receiver buffer.
The CPU is supposed to read this character before reception of the mext character. But if
CPU fails in reading the character loaded in the receiver buffer, the next the received
character replaces the previous one and the OVERRRUN Error occurs.

Framing Error : If valid stop bit is not detected at the end each character framming
€ITOr OCCULS,

All these errors, when occur, set the corrosponding bits in the status register. These
error bits are reset by setting ER bit in the command instruction.

10.4.6 Data Communication Types

We know that, B251A is Universal Synchronous, Asynchronous, Receiver, and
Transmitter. Therefore communication can take place with four different ways.

1. Asynchronous transmission
2. Asynchronous recephion

3. Synchronous transmission.
4. Synchronous reception

These communication modes can be enabled by writing proper mode and command
instructions. The mode instruction defines the baud rate (in case of asynchronous mode),
character length, number ol stop bit(s) and parity type. After writing proper mode
instruction it is necessary to write appropriate command instruction depending on the
communication type.

Asynchronous Transmission

Transmission can be enabled by setting transmission enable bit (bit 0) in the command
instruction. When transmitter is enabled and CTS = 0 the transmitter is ready to transfer
data on TxD line.

Operation : When transmitter is ready to transfer data on TxD line, CPU sends data
character and it is loaded in the transmit buffer register. The 8251A then automatically
adds a start bit (low level) followed by the data bits (least significant bit first), and the
programmed number of STOP bit(s) to each character. It also adds parity information prior
to STOP bit(s), as defined by the mode instruction. The character is then transmitted as a
serial data stream on the TxD output at the falling edge of TxC. The rate of transmission is
equal to 1, ¥ or X, that of the TxC, as defined by the mode instruction. Fig. 10.9 shows
the transmitter output in the asynchronous mode.

Microprocessors and Interfacing 10-13 Serial Communication

i [t
1] 1
TxD Marking | Star Pasrity Stop
bt Data bits bt bit(s)
I

LH]

Fig. 10.9 Transmitter output in asynchonous mode

Asynchronous Reception

Reception can be enabled by setting receive enable bit (bit 2) in the command
instruction.

Operation :

The RxD line is normally high. 8251A looks for a low level on the RxD line. When it
receives the low level, it assumes that it 15 a START bit and enables an internal counter. At
a count equivalent to one-half of a bit time, the BxD line is sampled again. If the line is
still low, a valid START bit is detected and the B251A proceeds to assemble the character.
After succesful reception of a START bif the B251A receives data, parity, and STOP bits
and then transfers the data on the receiver input register. The data is then transferred into
the receiver buffer register. Fig. 10.10 shows the receiver input in the asynchronous mode.

i £
] 1F

Start Parity Stop
RxD bil Data bits bit bils

[8
41

Fig. 10.10 Receiver input in asynchronous mode

Synchronous Transmission
Transmission can be enabled by setting transmission enable bit (bit 0) in the command

instruction. When transmitter is enabled and CTS = 0, the transmitter is ready to transfer
data on TxD line.

Operation : When transmitter is ready to transfer data on TxD line, 8251A transfers
characters serially out on the TxD line at the falling edge of the TxC. The first character
usually is the SYNC character.

__Ch-:-n_:- transmission has started, the data stream at the TxD output must continue at the
TxC rate. If CPU does not provide 8251A with a data character before transmitter buffers
become empty, the SYNC characters will be automatically inserted in the TxD data stream,
as shown in the Fig. 10.11. In this case, the TxEMPTY pin is raised high to indicate CPU
that transmitter buffers are empty. The TxEMPTY Firl 1% :i.ni'l.-mall}r reset when CPU writes
data character in the transmitter buffer.

Tz} | Data | Data |SYNCI1|SYHMCZ| Data | +=- -

T=EMPTY / ;;i;i;"n

Fig. 10.11 Insertion of SYNC characters

Microprocessors and Interfacing 10 -14 Serial Communication

Synchronous Reception : Receplion can be enabled by setting receive enable bit (bit 2) in
the command instruction.

Operation : In this mode character synchronization can be achieved internally or
externally.

Internal SYNC To detect the SYNC character 8251A should be programmed in the ‘Enter
HUNT" mode by setting bit 7 in the command insturction. Once 8251A enters in the “Enter
HUNT' mode it starts sampling data on the RxD pin on the rising edge of the RxC. The
content of the receiver buffer is compared at every bit boundary with the Ffrst SYNC
character until a match occurs. If the 8251A has been programmed for two SYNC
characters, the subsequent SYNC characters are compared until the match occurs. Once
8251A detects SYNC character(s) it enters from "HUNT" mode to character synchronization
mode, and starts receiving the data characters on the rising edge of the next RxC. To
indicate that the synchronization is achieved B251A sets the SYNDET pin high. It is reset
automatically when CPU reads the status register.

External SYNC
In the external F{'&"N(,'.' mode, :-i:,.'m:hr[m:izﬂtiqm is achieved h],' appl}ring a higl'l level on
the SYNDET pin, thus forcing the 8251A out of the HUNT mode.

10.4.7 Interfacing 8251A to B086 in YO Mapped 1/0 Mode

Fig. 10.12 shows the interfacing of B251A with 8086 in 1/0 mapped 1/0 technique.
Here, RD and WR signals are activated when M/IO signal is low, indicating 1/0 bus
L}Cl& 'Dnl}-' lower data bus (D - Dy} is used as B251A is 8-bit device. Reset out signal from
clock generator is connected to the reset signal of the B251A.

Dqg_,H—W .
Resat put ———={ Resat
Clock oul ———=| CLK

} —_ 2514
WR
WR———

ol F
:::_"{;'"— Ay ciD : }— EEr?h:?it
A b Cs
Ag —f
Ay — o C1s GND

Fig. 10.12 Interfacing of 8251A with 8086 in /O mapped /O

Microprocessors and Interfacing 10-15 Serial Communication

IO Map :
Register Addregs linas Address
Ar | Ag | As|Ad| Ay A | A | A
Data Register |2 |00 |0O0{0| QO 00H
Controd Regisier glojojo0i0y 010 0ZH

10.4.8 Interfacing 8251A to 8086 in Memory Mapped /O

In this type of [/O interfacing, the 8086 uses 20 address lines to identify an 1/0
device; an I/0 device is connected as if it is a memory register. The 3086 uses same
control signals and instructions to access 1/0 as those of memory. Fig. 'lﬂ.'li_ﬁhuw:i the
interfacing of 8251A with 8086 in memory mapped 1/O technique. Here, RD and WR
signals are activated when M/IO signal is high, indicating memory bus cycle. Address line
A, is used to select either data register or control register. The remaining address lines
A-A, are used to decoder the addresses for B251A.

DD'DT

Tal} f—

Resal gul ——=| Resel
Clack out ——=| CLK

: — B251A
—_— WR
WR————1

_ RxC From pulse
Az [::' * Ay o :— generator or
. TsC tirmes
= cS
J
Agg — Cis GND

Fig. 10.13 Interfacing of B251A with B086 in memory mapped /O

Microprocessors and Interfacing 10 - 16 Serial Communication
IO Map :

Rﬂﬂlﬂ‘l&l’ Aﬂl'i "-Ia 'in:' -nu l’l:b j'-.i. 'nﬂj A'.:' |‘H1 |.|1|:| |‘ﬂ h Af jid nﬁ lnq -ﬁ'; ng A' -A{. -‘lﬂﬂl'ﬂ'-ﬂ

Cata |OjO|OQ(OjO|O|OjOQfO|Q|Q|[OQ)]Q@|jOj0|O}0)]0Q|0;)0|00000H
Regislar

Controd | O JOJO|(OfO|D|OjO0fJO(O|O|O)O0O})OjO({OQf{0O|0] 1|0]00002H
Fhugiﬂurl

10.4.9 Programming Examples

To implement serial communication the CPU must inform the 8251A all details such as

mode, baud rate (in case of asynchronous mode), stop bits, parity etc. Therefore, prior to
data transfer, a set of control words must be loaded into the mode instructon and control

instruction registers of B251A.
Example 1 : Write the sequence of instructions required to initialize 8251A at address
B0H and B1H for the configuration given below

i) Character length - 6 bits v) DTR and RTS asserted

i) Parity even vi) Error flag reset

iii) Stop bit 1 vii) Transmitter enable

iv) Baud rate 64 X
Sol. : In the example, number of stop bits and baud rate is specified, therefore, it is
necessary to initlalize 8251A in the asychronous mode.

Mode word for given specificatior. *s as follows.

Q 1 i 1 1] 1 1 1 =7TH
L
1 Stap bl Ewen paity Character langth ASYN - Bawd rate
B bils 64 X

Fig. 10.14

Command word for given specification is as follows.

Cormmand word for given specfizabion & s follows

1] a 1 1 a a 1 1 =33 H
Mo hun mods —— == T disahia
Ha nlema ress| —————— | L = [TH - 11
AT =0 Ry orable
Effod gl Mo et Chai s

Fig. 10.15

Microprocessors and Interfacing 10 -17 Serial Communication

Program :

MoV AL, OQOH
OUT B1H, AL
OUT B1H, AL
ouT #1H, AL
MOV AL, 40H
OUT Bl1H, AL
MVI AL, 77H
oOT &1H, AL
MOV AL, 33H ;7 Command word imitialization

OUT 81H, AL
Note : Before initialization of the 8251A, the dummy mode word and the reset

command are sent to the control register. Initially control register may have any random
word; therefore, it is a good practice to reset the 8251A. However, it expects the instruction
as a mode word followed by the command word. Therefore, the reset command is sent
after sending three dummy mode words, which are recommended to avoid problems
when it is turmed on.

Dummy mode word

Feset command word
Reset BZ51A

Mode Word intilization

e we ma wa

10.5 Serial Communication Protocol (R5232C)

In response to the need for signals and handshake standards between DTE and DCE,
the Electronic Industries Association (EIA) introduced EIA standard R5-232 in 1962, It was
revised and named as R5-232C, in 196% by EIA. It is widely accepted for single ended data
transmission over short distances with low data rates.

This standard describes the functions of 25 signal and handshake pins for serial data
transfer. It also describes the wvoltage levels, impedance levels, rise and fall times,
maximum bit rate, and maximum capacitance for these signal lines. RS-232C specifies 25
signal pins and it specifies that the DTE connector should be male, and the DCE connector
should be a female. The most commonly used connector should be a female. The most
commonly used connector, DB-25P is shown in the Fig. 10.16.

Signals Piris Signals
1| Probective ground
Sacondary Transmitted data 14 2| Transmited data (T X 0] — DCE
Transmigsion signall etement timing (DCE souwce) 15 3| Received data (R X D)= OTE
Secondary received data 16 4| Requestiosend (RTSj———=DCE
Recessar signal slamant timing (DICE sourca) ik & | Clear to send (CTS) OTE
Unagsigred 18 B Data gal ready (DER) OTE
Sacondary reguast to send 9 7| Sigmal ground
DCE = Diata terminal ready (DTR) 20 B | Received ine signal datecior
Signal quality datecior 21 9 | (Resarad for date sef tasting)
Ring indicalor ¥ 10| |Resarved for dals sel tesiing)
Data signal rate salector (DTE/DCE source) 23 11| Unassigned
Transmit signal slemant timing (OTE sourca) 24 12 | Sec. received line sig. detector
Unassigned 23 13 | Sec. clear o send

Fig. 10.16 RS 232C 25 pin connector

Microprocessors and Interfacing 10-18 Serial Communication
Pin Common | RS-232C Description Signal
Number Mame Name Direction
On DEC
1 Al Protective ground
2 TXD BA Trangmitted data IN
3 RXD BE Received data out
4 RTS CA | Request io send IN
5 cTS CB Clear to send ouT
6 DSR. cC Data set ready ouT
T GND AB Signal ground (Common refum)
8 o CF | Received line signal detector ouT
9 {Reserved for data set testing)
10 (Reserved for data set testing)
11 Unsigned
12 i SCF Secondary recd. line sig. detector ouT
13 SCB Secondary clear to send ouT
14 SBA Secondary transmitted data IN
15 DB Transmission signal element timing ouT
(DCE source)
16 sge Secondary recaived data oUT
17 DD Receiver signal element timing ouT
(DCE source)
18 Unassigned
19 SCA Secondary reguest 10 send IM
20 DTR CD | Data terminal ready IN
g CG Signal quality detecior ouT
22 CE Ring ndicalor ouT
23 CHICI Data signal rate selector (DTE/DCE INOUT
SOUrce)
24 DA Transmit signal element timing (DTE IN
BOUFCE)
25 LUnassigned

Table 10.2

Microprocessors and Interfacing

10-19

Serial Communication

The Table 10.2 shows pins and signals description for RS-232C for data lines, The
voltage level + 3V to + 15V is defined as logic 0; from <3 V to =15 V is defined as logic 1.
The control and timing signals are compatible with the TTL level. Because of the
incompatibility of the data lines with the TTL logic, voltage translators, called line drivers
and line receivers, are required to interface TTL logic with the R5-232 signals. Fig. 10,17
shows the interfacing between TTL and R5-232 signals. The line driver, MC1488, converts
logic 1 into approximately 9 V. These levels at the receiving end are again converted by
the lime receiver, MC1489, into TTL-compatible logic.

RS - 232C
cabhe
MC 1488 f(-\‘ ﬁ MC 1489
l Receive TTL
Data TTL 2 2 Data
lEf_mnal Eq:mm_mlcalim
equipment + 34N ———G Y GV =34V equipment
02 W =——s gy +8Y —=02Y
—C 1 =C
Transmit
MC 1489 MC 1488
DTE DCE
GHD o O GHD

Fig. 10.17 Line drivers and receivers

10.6 Sample Programs of Serial Data Transfer

In this section, we are going to see three programs which transfer data serally through

the COM port of one PC to another PC,

10.6.1 Program to Transmit One Character

CODE SEGMENT

ASESUME C5 CODE, DS

ORG O0100H

START MOV AH, DOH
MOV AL, O03H
MOV DX, 01H
INT L14H
MOV BAH, 0BH
INT Z1H
MOV AH,01H
MOV DX,0lH
INT L4H
MOV AH, 4CH
INT Z21H

CODE ENDS

END ETART

CODE

Initialize

d=data bits, I
none and baud rate

serial port «
stop kit
110

~OoM2 with
i Parity
bps .

Fead character from keyboard

Transmit character

COMZ s=serial port

Terminmakte program and

Letudrn

Lo DOS

in AL

Lo

Hidden page

Microprocessors and Interfacing

10 - 21

Serial Communication

MOV
Mo
o (o)
MOV
INT
MOV

MOV
MOV
MOV
Mo
MOV
INT

BACK : MOV
MOV
MOV
MOV

INT
MOV

MOV
MOV
MOV
INT

MOV
MOV
MOV
INT
[kY
MO

INT

DEC
CMP
JHE
MOV
INT
CODE
END START

Program to Receive file

CODE SEGMENT
ASSUME C5:CODE,
ORG 0100H
START
MoV
MOV
INT

AL,

14H
AGATH
Mo

INT 14H

ENDS

MOV AH, 00 :
03
DX, 00

MOV AH, 03 H
DH.! nn

AL; 02

BX, FILE_HANDLE
CX, O

DX, 0

Z1H

SIE,; AX

AH; 42H

AL, DD

BX,FILE HANDLE
cx,0

D, 0

21H

AH, 3FH

BX, FILE_HANDLE
cx, 1

DX, OFFSET BUFF
21H

S5I,0FFSET BUFF

RH, 00H
AL, 03H
DX, 0
14H

AH,01H
AL, [8I]
D¥,0
14H
AH, 02H
DL, [SI]

Z1H

WORD PTR SIZ
2IZ,0

BACK
AH,
21 H

4CH

D5 :CODE

INITIALIZE

the end and use
end address- to get
the file size

SET file POINTER AT
STARTING POSITION

Read file one chacacter
at a time

Initialize COM 1

Transmit character read
from file to COML
Dizplay the same
Character on the monitor

| i
Decrement size pointer
Check if end of file

Terminate program and
return to DOS

COM1 PORT

Pead status of COM]

Microprocessors and Interfacing 10-22 Serial Communication

AND AH, D1 ; Check COM1l, if it is ready
CO TIacaliyme

CMF AH,CO1 : data

JHE AGAIN ¢ 1f not check status again
HMEXT MOV AM, 02 ; Receive data from serial

MOw DX, Qd ; Port COMI

INT 14H

CMEP AL, 1AH r CTheck tor end of

JE 3TOF 7 file character if yes stop

MOV DL, AL ; Display the receilved

MOV AH, 02 } character

INT 21H

JHME HMEXT ; Goto receive next character
STOP MOV AH, 4CH ; TEEMIMATIOCHN

IMT 21 H
CODE ENDS
END START

10.7 Introduction to High-Speed Serial Communication Standards, USB

The Universal Serial Bus (USB)} was bomn out of the frustration of PC users experience
trying to connect an incredibly wide range of peripherals to their computers. This was not
possible with the existing centronics parallel interface and the RS-232 serial port interface.
These interfaces could not handle increasing computer power and the number of
peripherals. They have become bottle-neck of slow communication, with limited options
for expansion. This is the situation that prompted the development of USB. The result is
versatile interface that can replace existing interfaces to low - to moderate - speed standard
and custom peripheral types on computers of all types. USB gives fast and flexible
interface for connecting all kinds of peripherals.

USB is playing a key role in fast growing consumer areas like digital imaging, PC
telephony, and multimedia games, etc. The presence of USB in most new PCs and its
plug-n-play capability, means that PCs and peripherals (such as CD ROM drives, tape and
floppy drives, scanners, printers, video devices, digital cameras, digital speakers,
telephones, modems, key boards, mice, digital joysticks and others) will automatically
configure and work together, with high degree of reliability, in this exciting new
application areas. USB opens the door to new levels of innovation and its use for input
devices. There are also brand new opportunities of all types of peripherals from printers to
scanners to high speed connection such as Ethemet, DSL, cable and satellite
communications.

Hidden page

Hidden page

Microprocessors and Interfacing 10-25 Serial Communication

reduce power consumption, this feature is especially useful on battery powered computers
where every milliampere counts.

12. Flexibility

USHB's four transfer types and two speed (3 with version 2.0) make it feasible for many
types of peripherals. There are transfer types suited for exchanging large and small blocks
of data, with and without time constraints. For data that cannot tolerate delays, USB can
guarantee a transfer rate or maximum time between transfers.

w.dike other interfaces, the USB does not assign specific functions to signals or make
other assumptions about how the interface will be use. For example, the status and control
lines on the PC's parallel port were defined with the intention of communicating with line
printers.

For communicating with common device types such as printers and modems, USB
supports classes with defined device requirements and protocols. This saves developers
from having to reinvent these for each peripheral.

13. Operating system support

Windows 98 was the first Windows operating system to reliably support USB, and its
successors such as Windows 2000 support USB as well. Other computers -nd operating
systems also have USB support. ON apple’s iMac, the only peripherals connectors are USB.
Other Macintoshes also support USB, and support is in progress for Linux, NetBSD, and
FreeBSD.

14. Peripheral support

On the peripheral side, each USB device's hardware must include a controller chip that
handles the details of USB communications. Some controllers are complete microcomputers
that include a CPU and memory that stores the code that runs inside the peripheral.
Others handle only USB-specific tasks, with a data bus that connects to another
microcontroller that performs non USB related functions and communicates with the USB
controller as needed.

The peripheral is responsible for responding to requests to send and receive
configuration data, and for reading and writing other data when requested. In some chips,
some of the functions are microcoded in hardware and don't need to be programmed.

Many USB controllers are based on popular architectures such as Intel's 8051, with
added circuits and machine codes to support USB.

Mosl peripheral manufactures provide sample code for their chips.

10.7.2 Limitation of USB
All of USB's advantages mean that it's a good candidate for use with many
peripherals. But one interface can't do it all.

From the user's perceptive, the downside to USB includes lack of support on order
hardware and operating systems, speed and distance limits that make USB impractical for

Hidden page

Microprocessors and Interfacing 10 - 27 Serial Communication

The controller

Just about any new PC will have a USB controller and at least two port connectors. If
a computer doesn’t have a USB controller built into its motherboard, you can add one on
an expansion card that plugs into a slot on the PCI bus,

Tha operating system

The other side of USB support is in the operating system. Windows 95 had some USB
support, but the support was greatly improved and enhanced in Windows 98. Windows 95
and Windows 98 can't use the same device drivers. Windows NT 4 doesn't support USB.
However, if vou're developing a peripheral that needs to run under NT, there are third
party products that you can use to create a device driver that enables the peripheral to be
used under NT. DOS and Windows 3.x also have no USB support, though again, third
party products may be available.

The components
The physical components of the Universal Serial Bus consist of the circuils, connectors,
and cables between a host and one or more devices.

The host is a PC or other computer that contains two components; a host confroller
and a root hub. These work together to enable the operating system to communicate with
the devices on the bus. The host controller formats data for transmitting on the bus and
translates received data to a format that operating system components can understand. The
host controller also performs other functions related to managing communications on the
bus. The root hub has one or more connectors for attaching devices. The root hub detects
the attachment and removal of devices, carries out requests from the host controller, and
passes data between devices and the host controller.

The devices are the peripherals and additional hubs that connect to the bus. A hub has
one or more ports for connecting devices. Each device must contain circuits and code that
know how to communicate with the host.

10.7.4 USB "tiered star” Topology

As shown in Fig. 10.18 at the center of each star is a hub. Each point on a star is a
device that connect to one of the hub's ports. The devices may be additional hubs or other
peripherals. The number of points on each star can vary, with a typical hub having two,
four, or seven ports. When there are multiple hub in series you can think of them as
connecting in a tier, or series, one above the next. (Refer Fig. on next page.).

All of the devices on a bus share one data path to the host computer. Only one device

can communicate with the host at a tme. If you need more bandwidth , you can add a
second data path to the host by installing an expansion card with another host controller

and root hub.

Fig. 10.19 shows a few of the possible configurations for a PC with a root hub that has
to USB connectors.

Microprocessors and Interfacing 10 - 28 Serial Communication

Peripharal Parpharal

Pearipheral ':3’;* Peripheral
Peripheral Hubs Peripheral
Peripheral Hub Hub Peripheral
Peripheral Peripharal

Fig. 10.18 USBE tired star topology

o/ o
o Peripheral

l—-_-_‘_“‘\.ﬂ

(r |

Peripheral

Peripheral 4-port HUB L
Peripheral

i SR “"‘--_-—-\..

\ g & H

Host PG Peripheral Host PC Compound devi Paripheral
Host PC with 2 peripherals Peripharal + 1-port HU

Parigharal

Host PC with & peripherals
Fig. 10.19 Different configurations for connecting USB devices to a host PC

10.7.5 Terminology used in USB

Host

The host is a PC or other computer that contains two components : a host controller
and a root hub.

Hidden page

Hidden page

Hidden page

Microprocessors and Interfacing 10 - 32 Serial Communication

connect to the bus detect the absence of bus activity for three milli seconds, they must
enter the suspend state and limit the current they draw from the bus.

5. Exchange data with the host

After the device is configured, it must respond o request to send and receive data.
The host may pole device at regular intervals or only when an application requests to
communicate with it. The device must respond to each poll by sending an
acknowledgment (ACK) that indicates that it received the data, or a negative
acknowledgment (NAK) to indicate that it is busy to handle the data.

10.7.8 USB Communication

USB communication is divided into two types, depending on whether they're used in
initial configuration or in applications. In configuration communications, the host learns
about the device and prepares iy for exchanging data, Most of these communications take
place when the host enumerates the device on power up or attachment. Application
communications occur when applications on the host exchange data with an enumerated
device. These are the communications that carry out the device's purpose. For example, for
a keyboard, the application communications are the sending of keypress data to the host,
to tell an application to display a character or perform other actions.

1. Configuration communications

During enumeration, the device's firmware responds o a series of standard requests
from the host. The device must identify each request, return the requested information,
and take other actions specified by the requests.

On PCs, Windows performs the enumeration, so there’s no user programming
involved. However, to complete the enumeration, Windows must have two files available
an INF file that identifies the filename and location of the device's driver, and the device
driver itself.

2. Application communications

After the host has exchanged enumeration information with the device and a device
driver has been assigned and loaded, the application phase can be fairly straightforward.
Al the host, applications can use standard Windows APl functions to read and write to the
device. At the device, transferring data typically requires placing data to send in the USB
controller's transmit buffer, reading received data from the receive buffer when a hardware
interrupt signals that data has arrived, and on completing a transfer, ensuring the device is
ready for the next transfer. Most devices also require some additional support for handling
errors and other evenis.

10.7.9 Elements of Transfer

1. Device endpoints
All transmissions travel to or from a device endpoint. The endpoint is a buffer that
stores multiple bytes. Typically it's a block of data memory or a register in the controller

Hidden page

Microprocessors _am_:l Interfacing 10 - 34 Serial Communication

10.7.10 Data Transfnr Types

The USB is dnsug,ned to handle many types of peripherals with varying requirements
for transfer rate, response ime, and error correcting. There are four types of data transfers
each handle different needs, and a peripheral can support the transfer types that are best
suited for its purpose.

1. Control transfer

Control transfers are the only type with functions defined by the USB specification.
These transfers enable the host to read and select configurations and other settings on the
devices being enumerated. Control transters may also send custom requests that send and
receive blocks of data for any purpose. All USB devices must support control transfers.

This data tnmh:-; exchanges configuration, setup, and command information between
the device and hmt CRCs check the data and initiate retransmissions when needed to
guarantee the correctness of these packets.

Control Transfers Use Message Pipes. In a message pipe, each transfer begins with a
Setup transaction containing a request. To complete the transfer, the host and device may
exchange data and“status information, or the device may fjust send status information.
There is alwavs at Jcni-‘.t one transaction that sends information in each direction.

1 the reguest }H un.e that the device supports, it takes the requested action. A device
may also respond mth a code that indicates that it doesn't support the request.

2. Bulk transfer

Bulk transfers ase intended for situations where the rate of transfer isn't critical, such
as sending a file 1 a printer or receiving data from a scanner. In these cases quick
transfers are mice, but the data can wait if necessary. If the bus is very busy with other
transfers that have guaranteed transfer rates, bulk transfers must wait, but if the bus is
idle, bulk transfers are very fast. Only full-speed devices can do bulk transfers. Devices
aren't required to support bulk transfers, but a specific device class might require it.

This data transfer moves large amounts of data when timely delivery is not critical.
Typical applications include printers and scanners. Bulk transfers are fillers, claiming
unuse USB bandwidth when nothing more important s going on. CRCs protect these
packets.

3. Interrupt transfer .

Interrupt transfers are for devices that must receive the host's or device's atlention
quickly. Other than control transfers, interrupt transfers are the only way that low speed
devices can transfer data. A keyboard or mouse can use interrupt transfers to send
keypress or mouse movement data. Both full and low speed devices can do interrupt
transfers. Devices aren't required to support interrupt transfers, but a specific device class
might require it. ;-

This data transfers, though not interrupt in the CPU diverting sense, poll devices to
see if they need service. Peripherals exchanging small amounts of data that need

Hidden page

Hidden page

Microprocessors and Interfacing 10-37 Serial Communication

suspend state, error checking information, and other information about how the chip will
be used and the current status of transmitted or received data. -

5. USB port
A USB peripheral controller must of course have a USB port and supporting circuits.

6. USB buffers - ——
A USB controller must have transmil and receive buffers for storing USBE data.

Review Questions

el G e

e = T e Y
b La fa w2

— -
o

Compare parallel and serial type of data transfer.

Classify and explain serial communication systems,

Explain date communication formats in serial communication.

Differentiate betiween Synchronous and Asynchronous data transfer.

List the features of 8251A.

[hscuss the orgamization and architectire of 8251A (LISART) with a functional block diagram.
Diraw and explain command and mode word formats of 82514,

Dirawe and explain the status word format of 8251A.

With a nent diqgram, explain how 8251 is interfoced with 8086 and used for serial communication.
Write @ short note on R5232C protocol.

Explain the features of USB. S

Gioe the details of USE comnector with Hhe help of diagram.

How USH data is gemerated 7 Explain the encoding method used by the USB.

What is bit stuffing 7

Dvate the flow chart explaining the process of generating USB data from the raw digital sevinl
dnta,

Write o short note o LISE commiranids.
Wit do won mean by stop and wait flow control 7

Qao

=

:q_,"

(10 - 38)

8051 Microcontroller

11.1 Introduction

To make a complete microcomputer system, only microprocessor is not sufficient. It is
necessary to add other peripherals such as read only memory (ROM), read /write memory
(RAM), decoders, drivers, number of input/output devices to make a complete
microcomputer system. In addition, special purpose devices, such as interrupt controller,
programmable timers, programmable [/0 devices, DMA controllers may be added to
improve the capability and performance and fHexibility of a microcomputer system.

The key feature of microprocessor based computer system is that it is possible to
design a system with a great tHexibility. [t is possible to contigure a system as large svstem
or small system by adding suitable peripherals

Oy the other hand, the microcontroller incorporates all the features that are found in
microprocessor. However, it has also added features to make a complete microcomputer
system on ils own. The microcontroller has built-in ROM, RAM, parallel 1/0, serial 170,
counters and a clock circuil.

The microcontroller has on-chip (built-in) peripheral devices. These on-chip peripherals
make it pm':i:ihlte to have .u.':nglt.'-r.'hip micnmumputw system. There are few more
advantages of built-in peripherals .

Built-in peripherals have smaller access times hence speed is more.

¢ Hardware reduces due to single chip microcomputer system.

* Less hardware, reduces PCB size and increases reliability of the system.

(11 - 1)

Microprocessors and Interfacing

11-2

8051 Microcontroller

Comparison between Microprocessor and Microcontroller
We have discussed what is a MiCroprocessor and a microcontroller. Let us see the
points of differences between them.

Meo. Microprocessor Microcontroller
1. Microprocessor contains ALU, control unit| Microcontrolier containg MiCrOprocessor,
(clock and timing circuit), different register and| memeory (ROM and RAM), 1O interfacing
interrupt cincusit. circuil and penpheral devices such as AD
converter, serial VO, timer etc,
2. It has many inslfuclions lo move data between| It has one of bwo nstructions to move data
memaory and CPLU, betweasan memory and CPU,
3, It has ong or two bit handling insinectons. It has many bit handling mstructions,
4. Access times for memory and D devices are| Less access times for built-in memory and 1'D
IO devices,
5. Microprocessor based system requires more| Microconiroller based sysiem requires less
hardware, hardware reducing PCB size and increasing
the reliability
6. Microprocessor based system is more flaxible| Less flexdble in design point of view,
in design point of view.
7. It has singla memory map for data and coda. It has separatea memory map for data and
code.
B. Less number of pins are multifunctioned. More number pins are multifunctioned.

The 8051 is an 8-bit microcontroller designed by Intel. It was optimized for 8-bit math
and single bit Boolean operations. Its family-MCS5-51 includes 8031, 8051 and 8751
microcontrollers. The Table 11.1 gives the summary of MCS-51 microcontrollers.

Internal Memory Timer |

Davice Program Data Event Counters Interrupts
BO52AH 8K = 8 ROM 256 = 8 RAM 3 = 16-Bit 8
BOS1AH 4 K= 8 ROM 128 = & RAM 2 = 16-Bit 5

8051 4 K » 8 ROM 128 = & RAM 2 » 16-Bit 5
BO32ZAH ey -] 256 » B RAM 2 = 16-Bit]
BO31AH FHOrE 128 =B RAM 2 = 16-Bit 5

&0 Yo 128 = 8 RAM 2 = 16-Bit 5
BYS51H 4 K = & EPROM 128 =8 RAM 2 = 16-Bit 5
ATS1H-12 4 K = & EPFROM 128 = 8 RAM 2 = 16-Bit 5

Table 11.1 MCS-51 family

Microprocessors and Interfacing 11-3 8051 Microcontroller

In this chapter we are going lo see features and the internal hardware details
(architecture) of 8051 microcontroller.

11.2 Features of 8051

The features of the B051 family are as follows :

1) 4096 bytes on - chip program memory.

2) 128 bytes on - chip data memory.

3) Four register banks.

4) 128 User-defined software flags.

5) 64 Kilobytes each program and external RAM addressability.

6) One microsecond instruction cycle with 12 MHz erystal.

7) 32 bidirectional 1/0 lines organized as four 8-bit ports (16 lines on 8031).
8) Multiple mode, high-speed programmable serial port.

9) Two multiple mode, 16-bit Timers,/Counters.
10) Two-level prioritized interrupt structure.

11) Full depth stack for subroutine return linkage and data storage.
12) Direct Byte and Bit addressability.

13) Binary or Decimal arithmetic.

14) Signed-overflow detection and parity computation.

15) Hardware Multiple and Divide in 4 psec.

16) Integrated Boolean Processor for control applications.

17) Upwardly compatible with existing 8084 software.

11.3 8051 Microcontroller Hardware

The Fig. 11.1 shows the internal block diagram of 8051. It consists of a CPU, two kinds
of memory sections (data memory - RAM and program memory - EPROM/ROM),
input/output ports, special function registers and confrol logic needed for a variety of
peripheral functions. These elements communicate through an eight bit data bus which
runs throughout the chip referred as internal data bus. This bus is buffered to the outside
world through an 1/0 port when memory or 1/0 expansion is desired.

8051 Microcontroller

B e i e e e e R EER T TS EWOTR MR MM OETOR RN NN NN . e e - e

|
suEsifiay vogaun |Bneds “
|

11-4

L
| : .,
“ e ol T CHE _i__._ﬂ " 250 He
m "_n_._.__:_ﬁ. Bl .#l._.._.. : O | BHL E..ﬁ—... :hh..__wn_.ﬁﬁ_ . . +.|"|.F|
: TR T a0 : n 1 . : B |
" e o | LNO9L | 00N | NODS | NOOS] i
| 1 pod puas | s |
| ‘dnuagLy B 15
i % 1 i
" r_-L_H_I E . ¥ |
_ ._. o i e |
_ WOYHd3 .ﬁ.r -
! ; ———= NI5d
! SSMPPe PG gL | |
| h :......l!.;.iu “
g - o gagng |- sepsifiay sapsifiey "
“ - ﬂ E“-H == - Tl o ! mw_.m.._ﬂ_ﬂ__ﬁ. —\ P m.r...m:]u.a_. 2 “
- - £ e wesboug 4 WP MSd !
_ -
.-I_|.I_. 4 N | L m s e e e e e B el e e e e e ke = e = oTE m omr o ocm i
I AEang C— -
e f i-._H .

£ e

Microprocessors and Interfacing

. Vi o] HLdO [\. Ny /
| : : Fa

T

P

i

I

|

|

1

! “

Fl = = 1 1 |

e uE‘.._ﬂ | et - i

1AL djo ¥ k N E-THVE=TITET T B e -} : ﬂ _

_w uod - 1 e i iaaifia Japsiba i

5 : JBnoD k| dwsg :

“ i i weibolg N i - "
._..I.l..l.-.rl L i

Lt g [T 0008 _ “

! i -~ i IEB0 4 | Jaisibey sasifiayy “

el g : Duod. | Gumer o, HOEIG bl a |

[— o | 1

! e T e i

” Froneas- B i i

e o e o e g e b d

Fig.11.1 Block diagram of 8051

Hidden page

Microprocessors and Interfacing 11-6 8051 Microcontroller

Port 0 (Pins 32 - 39)

Port 0 pins can be used as [/0 pins. The ouput drives and input buffers of port 0 are
used bo access external memory. Port 0 outputs the low order byte of the external memory
address, ime multiplexed with the data being written or read. Thus, port 0 can be used as
a multiplexed address/data bus.

Port 1 (Pins 1 - 8)
Port 1 pins can be used only as 1/0 pins.

Port 2 (Pins 21 - 28)

The output drives of port 2 are used to access external memory. Port 2 outputs the
high order byte of the external memory address when the address is 16 bits wide.
Otherwise, port 2 is used as an [/0 port.

Port 3 (Pins 10 - 17)
All port pins of port 3 are multifunctional. They have special functions.

Power-supply pins V.. (Pin 40) and Vg, (Pin 20)

8051 operates on d.c. power supply of +5 V with respect to ground. The +5 V is to be
connected to pins V- and ground to pin Vi~ with rated power supply current of 125 maA.

Oscillator pins XTAL2 (Pin 18) and XTAL 1 (Pin 19)
For generating an internal clock signal, the external oscillator is connected at these two

pins.

ALE [Address Latch Enable, Pin 30)

ADy to AD, lines are multiplexed. To demultiplex these lines and for obtaining lower
half of an address, an external latch and ALE signal of 8051 is used.

RST (Reset, Pin 9)
This pin is used to reset 8051. For proper reset operation, reset signal must be held
high at least for two machine cycles, while oscillator is running.

PSEN (Program Store Enable, Pin 29)

It is the active low output control !-iign.a] used by activate the enable !-i:iEI'IEI ot the
external ROM/EPROM. It is activated every six oscillator periods while reading the
external memory. Thus, this signal acts as the read strobe to external program memory.

EA (External Access, Pin 31)

When the EA pin is high (connected to V), program fetches to addresses 0000H
through OFFFH are directed to the internal ROM and program fetches to addresses 1000H
through FFFFH are directed to external ROM/EPROM. When EA is low {gorunded), all
addresses (00D0H to FFFFH) fetched by program are directed to the external
ROM/EFROM.

Microprocessors and Interfacing 11-7 8051 Micrecontroller

11.3.2 Central Processing Unit (CPU)

The CPU of 8051 consists of eight-bit Arithmetic and Logic unit with associated
registers like A, B, PSW, 5P, the sixteen bit program counter and “Data pointer” (DPTR)
registers. Alongwith these registers it has a set of special function registers. Along with
these registers it has a set of special function registers.

The 8051's ALU can perform arithmetic and logic functions on eight bit variables. The
arithmetic unit can perform addition, subtraction, multiplication and division. The logic
unit can perform logical operations such as AND, OR, and Exclusive-OR, as well as rotate,
clear, and complement. The ALU also looks after the branching decisions. An important
and unique feature of the B051 architecture is that the ALU can also manipulate one bit as
well as eight-bit data types. Individual bits may be set, cleared, complemented, moved,
tested, and used in logic computation.

11.3.3 Internal RAM

The 8051 has 128-byte internal RAM. It is accessed using RAM address register. The
Fig. 11.3 shows the organisation of internal RAM. As shown in the Fig. 11.3, internal RAM
of 8051 is organised into three distinct areas :

» Working registers
+ Bit Addressable

s Ceneral Purpose

1. First thirty-two bytes from address 00H to 1FH of internal RAM constitute
32 working registers. They are organised into four banks of eight registers each.
The four register banks are numbered 0 to 3 and are consists of eight registers
named R, lo R, Each register can be addressed by name or by its RAM address.
Only one register bank is in use at a time. Bits RS, and RS, in the PSW determine
which bank of registers is currently in use. Register banks when not selected can
be used as general purpose RAM. On reset, the Bank 0 is selected.

2. The 8051 provides 16 bytes of a bit-addressable area. It occupies RAM byte
addresses from 20H to 2FH, forming a total of 128 (16 = 8) addressable bits. An
addressable bit may be specified by its bit address of 00H to FFH, or 8 bits may
form any byte address from 20H to 2FH. For example, bit address 4EH refers bit 6
of the byte address 29H.

3. The RAM area above bit addressable area from 3H to 7FH is called general
purpose RAM. It is addressable as byte.
See Fig. 11.3 on next page.

11.3.4 Internal ROM

The 8051 has 4 Kbyte of internal ROM with address space from 0000H to OFFFH. 1t is
programmed by manufacturer when the chip is built. This part cannot be erased or altered

after fabrication. This is used to store final version of the program.

Microprocessors and Interfacing 11-8 8051 Microcontroller

Byte
Address Byte
Address
1F Ry TF
1E Ry
1D Ry
Bank 3 1 a
18 Ry
1A R
19 H-|
18 Ry
17 R,
16 Rg
15 Re
Bank2 S
13 R
12 Ry
R
:; : By es Bit Addresses] |
OF Ry o [7F 78 T T
0E Ry 28| 77 70
oo Ry 2D | 6F 68
oc Ry 2c | 67 B0
Bank 1 08 Ry 28 | 5F 58
oA R, 2h | 57 50
0a R, 29 | 4F 48
08 28 | 47 40
o7 R; 27 | 3F 38
08 28 | 37 30
05 Re 25 | 2F 28
O Ry 24 | 27 20
Hank 0 03 Ry 23| 1F 18
02 R, 21 17 10
01 Ry 21| OF 08
00 Ry 20| o7 00 30
Working Bt —— Bit General Purpose
Register 7 5

Fig. 11.2 Organisation of internal RAM of 8051

Microprocessors and Interfacing 11-9 8051 Microcontroller

It is accessed using program address register. The
program addresses higher than OFFFH, which exceed
the intermal ROM raparil‘:,.r will cause the 8051 to
automatically fetch code bytes from external program
memory. However, code byles can also be fetched
exclusively from an external memory addresses 0000H

PC —=

Program
Address

to FFFFH, by connecting the external access pin (EA) to OFFFH
4 K
ground. EPROM
ROM
Q000H

11.3.5 Input/Output Ports

The 8051 has 32 I/O pins configured as four eight-bit parallel ports (0, P1, Pz,
and P3). All four ports are bidirectional, i.e. each pin will be configured as input or
output (or both) under software control. Each port consists of a latch, an output driver,
and an input buffer.

Tha output drives of Ports 0 and 2 and the in]:'rut buffers of Port 0, are used to access
external memory. As mentioned earlier, Port 0 outputs the low order byte cf the external
memory address, time multiplexed with the data being written or read, and Port 2 outpuls
the high order byte of the external memory address when the address is 16 bits wide.
Otherwise Port 2 gives the contents of special function register P2

i
tch M T
Latch O Portd [oy
'n Dri .
Buffer 0 R DDy
Latch 1 b —
Port1 [vo
} : :
Buffer 1 afp Driver , :
Latch 2 b M
Port2 [s
-,
Buffer 2 olp Driver , : APy
1 e [Iou]
Laich 3 i fo——s | Inibesruat
Pt 3 : Conmier
Buffer 3 alp Drwver 1. Baite Dutn
T jo—e ! RO.WA

Fig. 11.4 /O Ports

Microprocessors and Interfacing 11-10 B051 Microcontroller

All port pins of Port 3 are multifunctional. They have special functions as shown
below including two external interrupts, two counter inputs, two special data lines and
two timing control strobes.

Symbol | Position Hame and Significance

RD PaT Read data control output. Active low pulse generated by hardware when
aexternal data memory is read.

WR P36 Write data conirol cutput. Actve low pulse generaled by hardware when
e 2mal data memaory is written,

T1 P35 Timer/'counter 1 extemal inpul o test pim,

T P34 Timer'counter 0 axtamal inpul or test pin.

INT1 P33 Interrupt 1 input pin. Low-level or falling-edge triggered.

INTD P32 Interrupt O imput pin. Low-level or falling-edge triggered.

TXD P3a Transmii Data pin for serial port in UART mode. Clock output in shift register
mada.

RxD P30 Receive Data pin for serial port in UART mode. Data FO pin in shift register
mode

Table 11.2

11.3.6 Register Set of 8051
11.3.6.1 Register A [Accumulator)

It is an 8-bit register. It holds a source operand and receives the result of the
arithmetic instructions (addition, subtraction, multiplication, and division). The accumulator
can be the source or destination for logical operations and a number of special data
movement instructions, including look-up tables and external RAM expansion. Several
functions apply exclusively to the accumulator : rotate, parity computation , testing for
zero , and so on.

11.3.6.2 Register B

In addition to accumulator, an 8-bit B-register is available as a general purpose register
when it is not being used for the hardware multiply /divide operation.

11.3.6.3 Program Status Word (Flag Register)

Many instructions implicitly or explicitly affect (or are affected by) several status flags,
which are grouped together to form the Program Status Word. Fig. 11.5 shows the bit
pattern of the program status word. It is an 8-bit word, containing the information as
follows.

Microprocessors and Interfacing 11-11 8051 Microcontroller

B, B, B: B: Bs 3 By B,

cYy | AC | F0 | RS1 | RSO | OV i P
CY Bit7 - Carry flag
AC Bite - Auxiliary carry flag for BCD operations
FO Bit 5 . User defined flag (Flag zero)
RS1, RS0 Bit 4-3 - Select the working register banks as follows :
RS1 RS0 Bank Selection
] 1] Q0H - OTH Bank 0
1] 1 OaH = 0FH Bank 1
i i} 10H - 1TH Bank 2
1 1 18H - 1FH Bank 3
o Bit 2 - Overflow flag
. Bit 1 A Reserved
P Bit 0 . Parity flag (1 = Even parity)

Fig. 11.5 Program status word

11.3.6.4 Stack and Stack Pointer

The stack refers to an area of internal RAM that is wsed in conjunction with certain
opcodes data to store and retrieve data quickly. The stack pointer register is used by the
8051 to hold an internal RAM address that is called top of stack. The stack pointer register
is 8-bit wide. It is increased before data is stored during PUSH and CALL instructions and
decremented after data is restored during POP and RET instructions. Thus stack array can
reside anywhere in on-chip RAM. The stack pointer is initialized to 07H after a reset. This
causes the stack to begin at location 0BH. The operation of stack and stack pointer is
illustrated in Fig. 11.6.

Please refer Fig. 11.6 on next page.

11.3.6.5 Data Pointer (DPTR)

The data peinter (DFTR) consists of a high byte (DPH) and a low byte (DPL). Its
function is to hold a 16 bit address. It may be manipulated as a 16 bit data register or as
two independent B bit registers. It serves as a base register in indirect jumps, lookup table
instructions and external data transfer. The DPTR does not have a single internal address;
DPH (83H) and DPL (82H) have separate internal addresses.

16-bit DPFTR
— e, —,
DPH DPL ;"; nory
:BﬁH:l IBEH:I 1E

g
B-bit =it

Microprocessors and Interfacing 11-12 8051 Microcontroller

Own-chip RAM On-chip RAM Cin-chip FAM
oa 05
F]— o T —
P — 7 | * e
Stack poinier 08 S . SP = 5P a7
(@) Status of slack and (b} Store oparation

stack pointer of reset

Data 1 09 ¥ Daga g | 05
[sPp)—=] Dawmz 06 | Reag 08
Stack pointer Dala 3 ar I 3P =— 5P-1 or
{z) Read operation
Fig. 11.6

11.3.6.6 Program Counter

The 8051 has a 16-bit program counter. It is vsed to hold the address of memory
location from which the next instruction is to be fetched. Due to this the width of the
program counter decides the maximum program length in bytes. For example, 8051 is
16-bit hence it can address upto 2'° bytes (64 K) of memory.

The PC is automatically incremented to point the next instruction in the program
sequence after execution of the current instruction. It may also be altered by certain
instructions. The PC is the only register that does not have an internal address.

11.3.6.7 Special Function Registers

Unlike other microprocessors in the Intel family, 8051 uses memory mapped /O
through a set of special function registers that are implemented in the address space
immediately above the 128 bytes of RAM. Fig. 11.7 shows special function bit addresses.
All access to the four 1/O ports, the CPU registers, interrupt-control registers, the
timer/counter, UART, and power control are performed through registers between B0H
and FFH.

Microprocessors and Interfacing 11-13 8051 Microcontroller
Bya Bt Address Regter
Address (MSB) (spy Symbol
OFFH
OFOH {FT | F& | FS | F4 | F3I|F2 | F1 | FO] B
OEOH | ET | EG | ES| E4 | E3| EZ| E1 | ED| ACC
O0H OF)D& | D5) D4 | O3 | D2) D7) D] PSW
0B8H | = | = | — | BC| BB | 84| B0 | BE] P
OB0H | BT |B6 | BS | B4 | B3| B2| B1| BO| P3
OABH | AF == | AL AR | AAG AQ | ABY |E
0AOH | AT | AG | AS | Ad | A3 | A2 | AT | AD| P2

9BH | 9F | 9E | 9D | 9C | 98 | 9A | 99 | 08 SCON
BOH | 97 | 96 | 95 | B4 | 83 | 92 | 91 | 90 P1
BBH | 8F | BE | 8D | BC (BB | 8A | BO | BA| TCON
BOH | 87 | B6 | B5 | B4 | B3 | 82 | B1 | 80 PO

Fig. 11.7 SFR bit address

Microprocessors and Interfacing 11-14 8051 Microcontroller

Table 11.3 contains a list of all the SFRs and their addresses and their value in binary.
Comparing Table 11.3 and Table 11.4 shows that all of the SFRs that are byte and bit
addressable are located on the first column of the Table 11.4.

Symbol Hame Address Value in Binary
AT Accurmuslator OEQH QOO0 0000
B B Register OF OH 0000 DOOO
PSW Program Status Word OO0 H QOO0 oooo
sP Slack Painter a1H ogooo 0111
DPTR Data Painter 2 Bytes

DPFL Low Byta 82H do00 0000

DPH High Byte 83H 0000 D0DOD
PO Port 0 B0H 1111 1111
M1 Part 1 S0H 1111 1111
P2 Part 2 0A0H 1111 1111
4=k Port 3 0BOH 1111 1111
P Interrupt Pricrity Control oeen sl XX XD 0neo

BOS2 X X000 00O0O0
‘IE Imterrupt Enable Control OABH st Dxx0 0000
anz2 0xXxo00 o000
TMOD Timern'Counter Mode Conftrol BOH Qooo 0000
*TCON Timen Countar Control BAH ogooo 0opao
* o+ T2CON Timern'Counter 2 Conirol DCEH 0000 0000
THO Timer' Countar 0 High Byte acH 0000 D000
TLO Timen'Counter 0 Low Byte 8AH 0000 2000
TH1 Timer'Counter 1 High Byte BOH 0000 DOOO
TL1 TimerCounter 1 LowByte BEH 0000 0000
+ TH2 TimeriCounter 2 High Byte 0CDH o000 0000
+ TL2 Timer'Counter 2 Low Byla 0CCH 0000 0000
+ RCAPZH | TIC 2 Capiure Reg. High Byle OCBH 0000 0000
+ RCAPZL T.’CECapiur&Fl&g.LﬂwEﬁE QCAH QoDoo0 o000
* SCON Sarial Control S84 Q000 DOOO
SBUF Serial Data Buffer feH Infarminate
PCON Power Control &TH HMOS DEXK XXXX
CHMOS DXx¥X 0000

Table 11.3 List of all SFRs (* = Bit addressable, + = B0O52 only)

Microprocessors and Interfacing 11-15 8051 Microcontroller

Bit B Bytes
Addressable
Fa FF
Fo B F?
E& EF
ED ACC ET
(0] DF
e PSW o7
ca T2CON RCAPZL RCAPZH T2 THZ CF .
] T
B8 I BF
2] P3 Br
AR IE AF
AD P2 AT
98 SCOM SEUF aF
S0 P1 ar
as TCON TMOD TLD TL1 THO TH1 BF
i P 5P DPL DPH PCOMN &y

Table 11.4 SFR memory map

11.4 Memory Organization in 8051

Fig. 11.8 shows the basic memory structure for B051. It can access upto 64 K program
memory and 64 K data memory. The B051 has 4 Kbytes of internal program memory and
256 bytes of internal data memory.

Program Memory (Read Only) Data Memory {Read/\Write)

: : FFFFH :
FFFFH P

:. "-‘h N 1 External —p

Exbirnal

i { OFFFH ol :

: - > - Internal :

= -_ i i FFH #ess :

EA=0 EA =1 i 1

Extesnal Eulermal 1 i

- > P00 i

000 ol :

(000 :

PSP R H i _£r1 rr1rI::rl1r-|1l

PSEN RO WR

Fig. 11.8 Memaory structure

Hidden page

Microprocessors and Interfacing 11 -17 8051 Microcontroller

Yoo
READ
-
LAlLH MTERMAL
PULL-UP
IMT BUS B X
o] PN
P
WRITE LATOH
O — A L O |
LATCH L”—
-
READ -
PIM
Fig. 11.9 (b) Port 1 bit
Vo
ADDR BUS
READ CONTROL
LATCH =] memmmm '
. PTERMAL
; | o |PuLue
: | P !
INT BUS . .
— o Q . '
P ' , -
WRITE LATCH = '] !T;.'t“f
L 2 P — [+] !
LATCH e : f
<N
READ Cortrol ITEq-rr-)
BN é
Fig. 11.9 (c) Port 2 bit
Veo
ALTERNATE
READ Fo o INTERMAL
LATCH T PLULL-U®
| ,
I || i Pax
INT BUS | | | FiN
D Q ! |
PaX | |
WRITE LATCH —
T —— T CL [}]
LATCH ﬂ

PIN

READ 1|I H"'-l -

ALTERMATE
NPT
FUMCTION

Fig. 11.9 (d) Port 3 bit
Fig. 11.9 8051 port bit latches and VO buffers

Microprocessors and Interfacing 11-18 8051 Microcontroller

As shown in the Fig. 119, for Port 0 and Port 2 drivers are switchable to internal
ADDR/DATA and ADDR bus, respectively, by internal CONTROL signal. The switching is
required to access extermal memory. During external memory accesses, the P2 5FR
remains unchanged, but PO 5FR gets 1s written to it

As mentioned earlier, Port 3 has multifunction pins. Therefore, each pin of Port 3 can
be programmed to use as [/0 or as one of the alternate function. This is achieved by the
another control input, “alternate output funcion”, as shown in the Fig. 11.9. When latch
bit of Port 3 contains 1, the output level is controlled by control input, “alternate output
function.”

The port pin can be configured as an input by writing 1 in the latch bit of the
corresponding pin. It turns OFF the output driver FET. Then for, Ports 1, 2 and 3, the pin
is pulled high by the internal pull-up, but can be pulled low by an external source. There
is no internal pull-up for port 0. Therefore, its output pin floats when 1 is written in the
latch bit, and pin can be used as a high impedance input. The port 0 is said to be “true
bidirectional”, because when configured as an input it floats.

On the otherhand, the output of Ports 1, 2 and 3 are pulled high with pull-up
registers, when configured as an input. Thus they are sometimes called “quasi
bidirectional” ports.

The Table 11.5 summarizes the funchions of four ports.

Port Functions
Port 0 * Used as an /O port

|Usad as a bi-directonal low-order address
and data bus for external memaory.

Port 1 & Used as an inputioutput port.

Port 2 # Used as an input’output port.

Used as a higher-order address bus for
axtarnal memaory.

Fort 3 # LUsed as an inputioutput port or used for
altermate function as shown balow,

P3.0-RXD Serial data input

F3.1-TXD Serial data oulput

P3.2.INTD External interrupt 0

P3.3-INT1 External interrupt 1

P3.4-TO External timer 0 input

P3.5T1 External timer 1 input

P1.8-WR External memaory write signal

PA.7-RD External memary read signal

Table 11.5 Port functions

Microprocessors and Interfacing 11-19 8051 Microcontroller

11.6 External Data Memory and Program Memory

We have seen that 8051 has internal data and code memory with limited memory
capacity. This memory capacity may not be sufficient for some applications. In such
situations, we have to connect external ROM/EPROM and RAM to 8051 microcontroller to
increase the memory capacity. We also know that ROM is used as a program memory and
EAM is used as a data memory. Let us see how 3051 accesses these memories.

11.6.1 External Program Memory

Fig. 11.10 shows a map af the 8051 program memaory.

FFFF H FFFF H
BO Kbytes
External 64 Kbyles
OR External
1000 H I
OFFFH = o
25
oon | imemnal 0000

Fig. 11.10 The 8051 program memory

In 8051, when the EA pin is connected to Moo, pm;.&ram fetches to addresses 0000H
through OFFFH are directed to the internal ROM and program fetches to addresses 1000H
through FFFFH are directed to external ROM/EPROM. On the other hand when EA pin is
grounded, all addresses (0000H to FFFFH) fetched by program are directed to the external
ROM/EPROM. The PSEN signal is used to activate output enable signal of the external
ROM/EPROM, as shown in the Fig. 11.11.

— 0 Po K= 0y
r
1

B0S

X
=
m
b

IC=-»r

+ N @
FF

CLK

Ag
A1s
OE

Fig. 11.11 ﬁ;’.‘l:iﬂiil'lg external program memory

Hidden page

Microprocessors and Interfacing 11-21 8051 Microcontroller

Instructions to Access External ROM / Program Memory
The table 11.6 explains the instructions to access external ROM/program memory.

Mnemonic COperation

MOVC A, @ A + DPTR | Copy the conlents of the external ROM address
formed by adding A and the DPFTR, to A

MOVC A, @ A + PC Copy the contents of the external ROM address
formed by addding A and the PC, 1o A

Table 11.6

11.6.2 External Data Memory
Fig. 11.14 shows a map of the 8051 data memory

Internal Memory
FFFF H
SO .- .- |
FF H E‘ ELL] EEEE
: Accessible by ble by
: Indirect ACLEES]
Upper: Addressing Diract
128 ¢ Onl Achdressing B4 Kbytes
: ! Extarmal
BOH § Memory
TFH —AND—»
Accassible by
Lower| pyect & indirect
128 Addressing
o000 H
0

Fig. 11.14 A map of the 8051 data memory

The 8051 can address upto 64 Kbytes of external data memory. The “MOVX"
instruction is used lo access the external data memory. The internal data memory space for
8051 is divided into three blocks : Lower 128 bytes, Upper 128 bytes and 5FRs. The upper
addresses and SFRs occupy the same block of address space, BOH through FFH, although
they are physically separate entities. As shown in the Fig. 11.14, the upper address space is
accessible by indirect addressing only and SFRs are accessible by direct addressing only.
On the other hand, lower address space can be accessed either by direct addressing or |i‘l‘.'
indirect addressing.

Hidden page

Microprocessors and Interfacing 11-23 8051 Microcontroller

ALE —/_\

/s

FSEN _/

WR

___/

\ /

DWATA, INSTR
PORT O L. e XXnD.A],)_G

FROM RI OR DPL FROM PCL

PORT 2 ><

P2.0-P27 OR Ag-A,q FROM DPH ><.ﬂlH - Ay FROM PCH

Fig. 11.16 (b) Timing waveforms for external data memory write cycle

Instructions to Access External Data Memory

The table 11.7 explains the instruction o access external data memory.

Mnaemonic

DOperation

MOVX A, @Rp

Copy the contents of the external address in Rp ta A

MOVX A, @DPTR

Copy the contenls of the external address in DPTR o Al

MOVX @ Rp, A

Copy data from A to the external address in Rp

MOVE (@DPTR, A

Copy data from & to the exlernal address in DPTR.

Table 11.7

11.6.3 Important Points to Remember in Accessing External Memory

e All external data moves with external BOM or external RAM involve the A

register.

¢ While accessing external memery, R, can address 256 bytes and DPTR can

address 64 Kbytes.

& MOVX instruction is used to access external RAM or 1/0 addresses.

When PC is used to access external ROM, it is incremented by 1 {to point to the next
instruction) before it is added to A to torm the physical address of external ROM.

Hidden page

Microprocessors and Interfacing 11-25 8051 Microcontroller

11.7.2 Timer 0 and Timer 1

In this timers, “Timer" or Counter” mode is selected by control bits C/T in the Special
Function Register TMOD (Fig. 11.18). These two Timer/Counters have four operating
modes, which are selected by bit-pairs (M1, M0) in TMOD. Modes 0, 1 and 2 are same for
both Timer/Counters. Mode 3 is different. The four operating modes are described as
follows :

(MSB) (LSB)
GATE CiT M1 MD GATE GT M1 MD—J

Tirmer 1 Tirmer ()

GATE (Gabing control when sel. TimenCounser “x® is ki1 Ml Operating Mode

n e L,
'“'Ih“"dl :t"f""m'“hﬂ'mn sl "“"‘”.I::‘ .,If'":'; 0 0 8-b& TmenCounter “THx" with “TLx"s 5-bil

snabled whonewar "TR " cortmal bit 15 sal prescaler
4} 1 160 Timar Counder "THa" wath "TLx® are
cfT Timer or l:mm;ur sadactor cheared for ﬁr'g:r CRscAded; ham is N prescaer,
operalion (input from internal system diock), Sal 10 B-bilsuio-rekoad TimeriCounber “THx® holds
for Counter aperation (input from *Tx" input pin] a Ve which Is 10 be reloaded inko “TLY"

winch e i awarflows.

1 1 (Timar O] TLO & an B-bil Timen'Counter
cantrolled by tha slandsnd Tener O conbol
bils. THO is an B-bil imer only conirolled by
Tirmwer 1 contral bats,

1 1 {Timer 1} Timern'Counbar 1 siopped

Fig. 11.18 TMOD : Timer/counter mode control register
MODE 0

TLY TH1
(5 Bits} | (& Bis) M TF1 * Intermupt

=
.
3
=
—
e
—

= oo R E S E R E WS W W W W WO O m W W W W o W W m w o

Timer { counier conbiol logic

Fig. 11.19 Timer/icounter 1 mode 0 : 13-bit counter

Microprocessors and Interfacing 11-26 8051 Microcontroller

Both Timers in Mode 0 is an B-bit Counter with a divide-by-32 prescaler. This 13-bit
fimer is MCS5-48 compatible. Fig. 11.19 shows the Mode 0 operation as it applies to Timer
1. In this mode, the Timer register is configured as a 13-bit register. As the count rolls over
from all 1s to all Os, it sets the Timer interrupt flag TF1. The counted input is enabled to
the Timer when TR1 = 1 and either GATE = 0 or INT1 = 1. (Setting GATE = 1 allows the
Timer to be controlled by external input INTI1, to facilitate pulse width measurements.)
TR1 is a control bit in the Special Function Register TCON (Fig. 11.20) GATE is in TMOD.

(M5B} (LSB)
TF1 TR1 TFQ TR (3] IT1 IED o
Symbaol Position Mame and Significance
TF1 TCOM.T Timer 1 Overflow Flag. Sel by hasgware on tmerfcounter overflow. Cleared when

inbarrupd processed.

TR1 TCOM.& Timer 1 Rum condrol bit. Set'cleared by software to um timercounter onioff,

TFD TCOM.S Timer O Cverfiow Flag, Sel by hardware on timer'counter overflow, Cleared when
inbErrupl processed,

TR TCOM 4 Timer O Run control b, Set/ceared by softears 1o um timen'counter onfolf

E1 TCOM. 3 Infermapt 1 Edge Flag. Sel by hardware when external mlerrupl edge detectad

Clearad whan ntemupl protessed

IT1 TCOM 2 Interrugl 1 Type control bil. Seticleared by software o specily falling edgelow
level iriggered axternal iMerrupis,

IEQ TCON.1 Interrupd O Edge Flag, Set by hardware when external interrupt edge detected
Cleared when inlermuspl processed,

ITO TCOND Interrupt O Type controd bil. Sebicleared by software to specily falling edge/ow
lEyad 1nggere|:| exbeErnal inlarn.upq:..

Fig 11.20 TCON-timer/counter control/status register
The 13-bit register consists of all 8 bits of TH1 and the lower 5 bits of TL1. The upper
3 bits of TL1 are indeterminate and should be ignored. Setting the run flag (TR1) does not
clear the registers.
Mode 0 operation is the same for Timer 0 as for Timer 1. Substitute TRD, TF) and

INTO for the corresponding Timer 1 signals in Fig. 11.19. There are two different GATE
bits, one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

Hidden page

Microprocessors and Interfacing 11-28 8051 Microcontroller

MODE 3

Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 = 0.
Timer 0 in Mode 3 establishes TLO and THO as two separate counters. The logic for
Mode 3 on Timer 0 is shown in Fig. 11.23. TLD uses the Timer (0 control bits : 'l.'_".-"f,. GATE,
TR0, INTO, and TFO. THO is locked into a timer mode {counting machine cycles) and takes
over the use of TR1 and TF1 from Timer 1. Thus, THD now controls the : Timer 1
interrupt.

1121 g

D56 <14 —vl

TLO =
(8 Bits) = TF0 [—= Intermupt

;

g
I
i

T PN
B
GATE
E"'-{:}’—:)_/- Contred
|HT‘-3P‘|-NJ
THO
121 i oo @mis) [TF1 [Interrupt
CONTROL
TR1—

Fig. 11.23 Timer/counter 0 mode 3 : two B-bit counters
Mode 3 is provided for applications requiring an extra 8-bit timer or counter. With
Timer 0 in Mode 3, an 8051 can look like it has three Timer/Counters, and an B052, like it
has four. When timer (0 is in Mode 3, Timer 1 can be turned on and off by switching it out
of and into its own Mode 3, or can still be used by the serial port as a baud rate
generator, or in fact, in any application not requiring an interrupt.

The Table 11.8 summarizes the modes of timers.

Mode Brief Description

Mode 0 13:bit tirner (TL-5 bits and TH-8 bits)
Counter overflow is indicated by time interrupt flag.

Mado 1 18-bit imer (TL-8 bits and TH-8 bits)
Rast s same as moda 0.

koda 2 Automatic reload mode. B-bit counter (TL-2 bit) overfiow from
TL not only sets TF, but also reloads TL with the conlents of TH.

Mode 3 Establishes TL and TH as two separate countars.
Table 11.8 Summary of timer modes

Hidden page

Microprocessors and Interfacing 11-30 8051 Microcontroller

Rl SO0 Receve Infermgpt flag.
Seb by hardware when bybe receihved, Cleared by software afler servicing
Mote : The siate of [SM0, SM1) salects .
Mode SMO SM1
0 0 0 - Shift register ; bawd = 12
1 oo B-bit UART, variable data rate.
p 1 0 - &-bit UVART, fixed data rate ; baud = £32 or U564
9 1 1 9-bit UART, variable data rate.
Fig. 11.24 (a) SCON-serial port control/status register
(MSE) (LSB)
T G 5 4 3 2 1 0
SMOD - - = GF1 GFOD FD oL
Symbol | Position Mame and Significance
SMOD PCON.T Serial baud rate modify bit, it is 0 at resed. It s sel 10 1 by program 10 double
the baud rate.
- PCON. G4 Mot defined
GF1 PCOMN.3 General purpose user flag bit 1. Set/cleared by program.
GF0 PCOM.2 General purpose user flag bit 0. Set/cleared by program.
FD PCON .1 Powar down bit. It is set to 1 by program to anfer power down configuration
for CHRYOS microcontrollers.
oL PCON.O idle mode bit, It is set to 1 by program to enter idle mode configuration for
CHMOS microconiroliers.
Mote : PCON is not bit addressable

Fig. 11.24 (b) PCON register

11.8.1 Operating Modes for Serial Port

MODE 0
In this mode, serial data enters and exits through RXD. TXD outputs the shift clock. 8
bits are transmitted/received : B data bits (LSB first). The baud rate is fixed at 1/12 the

oscillator frequency.

MODE 1

In this mode, 10 bits are transmitted (through TXD) or received (through RXD) : a start
bit {0}, 8 data bits (LSB first), and a stop bit (1). On receive, the stop bil goes into KBS in
Special Function Register SCON. The baud rate is variable.

Microprocessors and Interfacing 11-3 8051 Microcontroller

MODE 2

In this mode, 11 bits are transmitted (thorugh TXD) or received (through RXD) : a start
bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On
Transmit, the 9th data bit (TBS in 5CON) can be assigned the value of 0 or 1. Or, lor
example, the parity bit (I, in the PSW) could be moved into TBS. On receive, the 9th data
bit goes into RB8 in Special Function Regsiter SCON, while the stop bit is ignored. The
baud rate is programmable to either 14, or 1, the oscillator frequency.

MODE 3

Inv this mode, 11 bits are fransmitted I:thrl;:lug]'l TXD or received I:tht‘nmgh EXDY) : a start
bit (U), 8 data bits (LSB first), a programmable 9th data bit and a stop bit {1). In fact,
Maode ? is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode
3 is variable.

In all four modes, bransmission is initiated by any instruction that uses SBUF as a
destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1.
Reception is initiated in the other modes by the incoming start bit if REN = 1.

The Table 11.9 summaries the four serial port modes provided by 8051,

Mode Transmission Format Baud Rate
o B-geta bits ﬁ oscillalor frequency
1 10-kdt (start bit + S-data bits + stop bil) Variable
2 ; J"Tm[:tg: Eilsl_:':p B-;?]La bits + programmabie Fm?mmum to either
or &; oscillator frequency
3 11-bit (start bit + B data bit #+ programmabia 9“' Varahle
data bit + stop bit)

Table 11.9 Summary of serial port modes

11.8.2 Serial Port Control Register

The serial port control and status register is the Special Function Register S5CON,
shown in Fig. 11.25. This register conlains not only the mode selection bits, but also the
9th data bit for transmit and receive (TBS and RBE), and the serial port interrupt bits
(TT and RI).

11.8.3 Generating Baud Rates

Serial Port in Mode 0 :

Mode 0 has a fixed baud rate which is 1/12 of the vscillator frequency. To run the
serial port in this mode none of the Timer/Counters need to be set up. Only the SCON
register needs fo be defined.

Ose Freg

Baud Rate = 5

Microprocessors and Interfacing 11-32 8051 Microcontroller

Serial port in Mode 1

Mode 1 has a variable baud rate. The baud rate can be generated by either Timer 1 or
Timer 2 (B052 only).
Using Timer/Counter 1 to Generate Baud Rates

For this purpose, Timer 1 is used in mode 2 (Auto-Reload).

k= Owcillator Fri.'q-

Baud Rate 32%12x[256-TH1)|

If SMOD = 0, then k = 1.
If SMOD = 1, then k = 2. (SMOD is the PCON register)

Most of the time the user knows the baud rate and needs to know the reload value for
THI. Therefore, the equation to caleulate TH1 can be written as :

kx Osc Freq.

THL = 26- 384 « baud rate

TH1 must be an integer value. Rounding off TH1 to the nearest integer may not
produce the desired baud rate. In this case, the user may have to choose another crystal
frequency.

Since the PCON register is not bit addressable, one way to set the bit is logical ORing
the PCOMN register, (i.e. ORL PCON, #80H). The address of PCON is B7H.

Using Timer/Counter 2 to Generate Baud Rates
For this purpose, Timer 2 must be used in the baud rate generating mode. If Timer 2
is being clocked through pin T2 (P1.0) the baud rate is :

Timer 2 Overflow Rate

Baud Rate = T

And if it is being clocked internally the baud rate is :

Osc Freq.

Baud Rate = 32 = 65536 -(RCAP2H, RCAFP2L)]

To obtain the reload value for RCAPZH and RECAPIL the above equalion can be
rewritten as :

O Freq.

RCAP2ZH, RCAPZL = 65536 -
32 x baud rate

Serial Port in Mode 2

The baud rate is fixed in this mode and is }4; or), of the oscillator frequency
depending on the value of the SMOD bit in the PCON register. In this mode none of the
Timers are used and the clock comes from the internal phase 2 clock.

SMOD = 1, Baud Rate = 14, Osc Freq.

Microprocessors and Interfacing 11 - 33 8051 Microcontroller

SMOD = 0, Baud Rate = 1, Osc Freq.
To set the SMOD bit : ORL PCON #80H. The address of PCON is 87H.

Serial Port in Mode 3
The baud rate in mode 3 is variable and sets up exactly the same as in mode 1.

11.9 Interrupt Structure

The 8051 provides 5 interrupt sources. The 8052 provides 6. These are shown in
Fig. 11.25. The external Interrupts INTO and INT1 can each be either level-activated or
transition-activated, depending on bits IT0 and IT1 in Register TCON. The flags that
actually generate these interrupts are bits [ED and [El1 in TCON. When an external
interrupt is generated, the flag that generated it is cleared by the hardware when the
service routine is vectored to only if the interrupt was transition-activated. If the interrupt
was level-activated, then the external requesting source is what controls the request flag,
rather that the on-chip hardware.

m—J‘m) \
=g

e

TPO -
0Fire Interrupt
THT1 = |[E1 |—= SOURCES
TF1 =
T —1 ™~ _
Rl

Fig. 11.25 MCS - 51 Interrupt structure

The Timer 0 and Timer 1 Interrupts are generated by TFQ and TF1, which are set by a
rollover in their respective Timer/Counter registers (except see Timer 0 in Mode 3). The
timer flag set upon generation of interrupt is cleared by the on-chip hardware when
microcontroller starts execution of particular interrupt service routine.

The Serial port Interrupt is generated by the logical OR of RI and TL Meither of these
flags is cleared by hardware when the service routine is vectored to. In fact, the service

Hidden page

Microprocessors and Interfacing 11-35 B051 Micrecontroller

(MSB) (LSB)
- PS PT1 Px1 PTO PX0
Symbol | Position Mame and Significance
IP7 (Reservad)
IP6 {Reserved)
- IP.5 (Reserved)
Ps iP.4 Serial port Priority control bit,
Seticleared by software o specify highflow priority interrupts for Serial por.
PT1 IP.3 Tirmer 1 Priorty controd bit
Selicleared by software 1o specify highflow priority interrupts for limer/counter 1.
PX1 P2 External interrupt 1 Priorty control bit,
Seticleared by software io specify highflow priority interrupts for INT1.
FTO I”.1 Tirmer O Priofity conbrod bl
Set/cleared by software to specify highflow priorty interrupts for timer/countar 0.
PX0 IP.0 External interfupt 0 Priority control bit, Set'cleared by software to specify
highflow prionty intemrupts for INTO,

Fig. 11.27 IP - Interrupt priority control register

If two requests of different priority levels are received simultaneously, the request of
higher priority level is servided. If requests of the same priority level are received
simultaneously, an internal polling sequence determines which request is serviced. Thus
within each priority level there is a second priority structure determined by the polling

sequence, as follows :

No. Source Priority within Level
1 IED (highesl)

) TFQ

| IE1

4 - TF1

5 Rl + Tl (lowest)

Note that the "priority within level” structure is only used to resolve simultaneous
requests of the same priority level.

The IP register contains a number of unimplemented bits. IP.7 and IP.6 are vacant in
the 80525, and in the B051s these and IP.5 are vacant. User software should not write 1s to
these bit positions, since they may be used in future MC5-51 products.

Hidden page

Microprocessors and Interfacing 11-37 8051 Microcontroller

11.10 Interfacing 8255 for I/O Expansion

As seen earlier, for interfacing external memory to the 8051, port 0 and port 2 are used
as multiplexed address/data bus and a higher order address bus respectively. If the circuit
needs the on chip peripherals (e.g. serial I/0 and Interrupts) then only 1 port is available
tor 1/0. In such situations, 1/0 expansion is necessary and it is achieved by using B255.
The Fig. 11.28 shows the expanded 1/0 ports using 8255. Data bus of 8255 is connected to
the Port 0. Address lines AD and Al, after latches are connected to AD and Al of the B255.

|
- %TALY Pie

— XTALZ pig

Fid
F13

B
[+
LN
r
Fii -i-
Pl
Fi&§
P2 %
[LF] s
Err Eid
1 P24
"_. F!STm Flzﬁ
ﬂi-:- J-}-
231
11 pay 22 i | PAT
e YA = pae LAt ™ ﬂ AR %
pos LM ¥“ b T
Faa ..,H I Pad
T E rn:l.] PR
L RXD paz L7 ﬁ a7 Ll I
I LR] o [TR ol
ald THD roo IR ru; iy LN
TR i
N = 33
a1 ALE] ';5_1'-\..
= Hh
T " A255 PG4
LY £ .
PG
4 pog
PCH —:'i
21 == |5 -
TS
k|
EL
ri]
i FET
rEE E
E FBE
4 i PBE [g
HT R
2
2] = E_ roy LIE
W ;i :liT FED L

TaL s
3%

Fig. 11.28 VO expansion using 8255

Hidden page

Hidden page

Hidden page

Microprocessors and Interfacing A-3 Appendix - A
i Instruction Code
LOGIC TES43ZI0 TES43I210 TES4IZI0 TES4IZN0
HOT = invart a0t w| mod0tnm]

¥R = Shift Logical Fight
BAR = Shit Arihmatic Right
ROL = Aotule Left

ROR = Rotae Right

RCR = Fotale Through Carry Raghi
AHD = And:

Reg Memony with Hegesier i Erfer
it 1 gt Mir-ce,
et at b Al Curridator

Rogsser/Memany and Fagister
irreadiaty Dals aed Fegiterbdamary
mmadiate Data ard Accumulaice:
OR = Or:

Reg Mdamaory ard Megisior o Ether
i Lo Apgsio sy

I s b A g eicr

RO = Exciusive or:

Reg Memory and Rogster 1o Either
imodiate in RogiserMbemany
immadaty o Accumitaior
STRING MANIPULATION
REF « Rugmal

MOVE = Movn Byin'¥or

CMPS = Campain Byla/Waie
SCAZ = i Ayidard
LODS = Load Bylefivd o AL
STOS = Sior Byl from ALM

CONTROL TRANSFER
CALL = Cali:

Dirpct wighin Begment
i wiltie Sagoes
[iresc| Ircarsagmeni

mlﬂl.wmlt1ﬂ1ﬂﬂfil l'ﬂ1tllll'|'|'|'l|

189 0vw]| mod 81 om |
110900 vw]| mod118nm |

116800 ww | moddddnm |
[ot00ve]| mod0oiom]

R = Retata Thicugh Camy Flag Lefi |1 1D‘Ililﬂ'r'l'| mod 4 1.0nm I

it 0dve] modd 1 1am |

Q1000 de | moareg nm

TEST = Amd Fumiion bo Flags, ko Resull:

(1od00ddw] mod1@0am | aleti | catadwsi |
[potooiow] dam | demidw=i |
[(oo0otow] medmgrm |
et tw| modo0dem | cats | calnfwe1 |
[1010i00w] s | dmmidw=1 |
[cooot0dw] =edmgem]
[1000000w| mud 00 i | dats | catad wei |

[oadaridw]| daty | datal w=1 |

(001 100dw] modemgem |
[Foconoow]medticom]
| EEEEEEET

diila | detsnidd wei |

[Gaiwet]

Cec]

101001 0w

[t1101000] dsplew |
oo 1 [med01omm]

[oer1070] ofseiow | ofseihigh |

[sagiow T weghih]

mod 01 1 im

dup-high |

1119149111

Microprocessors and Interfacing

A-4

Appendix - A

Mnamanic and
D criplean

InERnECtion Cods

JEP v Lnconditignel famp
Dwrect within Segmert
Driract withars Sagiael-Shon
Indienec! wishin Segman|

DHrmcr b eograsp

Indiecl Intersagman
RET = Faturn fram CALL;
Witren Egman

Witin Seg Adding Immed o 5P

i PR DT

JENT = burp on EqualTan

or Egual

JLEIJME = Jump o Lass or Equsl
Mot Groaios
or Equal

Mol Abren

JO = Jurg ooy Crvanflow
J8 = Jump om Sign

JHELIME = Jump on bt Eguak bl
Zom

o Ecpual

rlargagment Addng immedale 3P [10016140 |

JUMGE = Jump on Lessifot Greater (01 117700]

JBLINAE = Jump on Balow™ol Above (01110010
JBELIRA & Jiatip on Bakew o Egual

JPLAPE = Jump on Panby%anty Even

JHLUGE = o on Mol LessGoater (011911019 |

JHLELMG = Jurep on Mot Less of Equat (87718917191 |
Giresinr

JHBLIAE = Jusig o Mol Bl ARev

TES43310 TES43Z19 TESAIITD

[1v1d91001] displow |

Gisp-ragn

]

[iigioii] dew |
[0 11 991 [meod 800 em |

{11901010] ofsatdos [cfsehign |

[segbow | seghigh |
[Ht199811] medt01 s |
(11008810 astadow | dalakigh |

cata-tign |

| CEEEIERT A |

CEEEEERT |

EEEETEELD|
EEREETELD |
EEEELTTT|
EERRELL |

[EEELEED|

CEEETTEER |

o Expusal
JHBENA = Jump on Mol Belos or
Equal Almive
SR = Jumpon Mol Cheerliow
JMB = Jurmgp on Mot Sign
LOGP = Leap CX Times

Erpsal

FisnEral
JGXT = Jump on GX Zom

INT = Inbsrrupd
Trpe Spacified

Type 3

INTD = irwmapt on Doy
IRET = intamrupt Hebam

JHPLIPO = Jump on Mol ParPar Odd [01111011 |

LOOPTLOOPE = Loop Whie Zend
LOOPMELOOPME = Loop Whis Mol (11100000

CEEELEEEL|

| CEEEIT-E
| FEEXEELLE |

| EEELEEEL |

[Fi1ooooi]

—————-n_n—._._—_—__._.J_—_—_

8|1 e 1 o] I L[I] e[1 (2

EEEETIIER |

EELLEEE |

1188118008

i

Microprocessors and interfacing A-5 Appendix - A
Wrventa wed ——
FROCESSOR CONTROL TESAIE10 TES4IZY0
GLE = Ciear Camry [T1111009]
W« GomptmartCory
1C - s cary
e
37D = Sat Direction
T
7+ St v
MY = Hal
AT = et
EBC = Escapa o Exienal Do) 11071 exm | md K 83 0m
-

Qo

& - weays

[N PR

£

Copyrighted material

Hidden page

Hidden page

Microprocessors and Interfacing B-3 . Appendix - B
Mnemonic Description Clock cycles | Number of | Page No.
bytes
DWW Linsigned division 188
8-bil register 80-80 :
16-bit register 144-162 é
B-bit memory (B6-06) + EA -4
16-bit memory (150-168) + EA | 24
ESC Escape 203
Regisier 2 2
Memory B + EA 2-4
HLT Hait 2 1 202
o Integer division 189
B-bit register 101-112 2
16-bit register 165-184 2
B-bit memaory (107=118) + EA 2-4
16-bit mamory (171=180) + EA 24
IMUL Integer multiplication 188
B-bit register BO-98 2
16-bit regisier 1268~-154 2
B-bit mamary (86104} + EA 2-4
16-bit mamory (134-160) + EA 2-4
N Input from WO port 180
Fixed port 10 2
Variable port 1
INC Incremeant by 1 181
16-bit register 2 A
B-bit register 3 2
Memory 15 + EA 24
INT Intermupt 204
Type=3 52 1
Type=3 81 2
INTD Intesrrupdt if overflow 1 204
Intarrupt ks taken 53 o
Interrupt is not taken 4
IRET | Restum from interrupt 24 1 204
JAS Jump i above/ 16/4 2 200
JNBE Jump if not below or equal 200

Microprocessors and Interfacing B-4 _oo oo Appendix~B
Mnemonic Description Clock eycles Number | Page No.
of bytes
JAE/ Jump if above or equall 1644 2 200
JNB/ Jump if not below! 200
JNC Jump if ol camy 200
JB/ Jump if below! 16/4 2 200
JNAE/! Jump if not above or equal/ 200
JG Jump if carry 200
JBE/ Jump if below or equal’ 164 2 200
JNA Jump if not above 200
JCXZ Jump if CX is zemo 18/6 2 200
JEJ Jump if egqualf 164 2 201
Jz Jump if zero 200
JGI Jump if greater 16/4 2 200
JHLE Jump il not less or eqgual 200
JGE/ Jump if greater or equal/ 16/4 2 200
JHL Jump if not less 200
JLJ Jump if less/ 164 2 200
JNGE Jump if npt greater or equal 200
JLE! Jump if less or equal 16/4 2 200
JNG Jumg if nat greater 200
JMP Jump 198
Intrasegment direct short 15 2 .
Intragegment direct 15 3
intersegment direct 15 5
Intrasegment ndirect through memory 18 + EA 2=
Intrasegment indirect through register 11 2
Intersegment indirect 24 + EA 24
JNES Jump if not equal/ 16/4 2 iqu
JNZ Jump if nod zero 200

Hidden page

Clock cycles

Page No.

Accumulator o memory
Memory to accumulalor
Register to register
Memory to register
Ragister to mamory
Immediate lo register
Immediate o memory
Register to S8, DS, or ES
Memory to 55, DS, or ES
Segment register 1o register
E!Em'lttlghluhnmr

10
10

8 + EA
8+ EA

10 + EA

B+ EA

B+ EA

sLERme®

B3 B3 B3 R
& b

176

Move tring/

Move word siring
Not repeated
Repsated

18
8 + 1Tirep

Unsigned multiplication
8-bil register

16-bit register

8-bit memery

16-bit memory

70-77
118-133
(76-83) + EA
(124-139) + EA

187

NEG

Negate
Registar
Memory

16 + EA

185

NOP

‘Mo operation

16 + EA

rh.'l-

8+ EA
16 + EA

17T + EA

3 G o

1,

Hidden page

Hidden page

Hidden page

B-10

!

Clock cycles

i

Page Mo.

XOR Logical exclusive OR
Register with regisier
Memory with regisler

Immediate with sccumulator
Immediate with register
Immadiata with mamory

8 +EA
16 + EA

17 + EA

sLEIYT™

Q00

Hidden page

Microprocessors and Interfacing c-2 Appendix - C

If address is not specified, the location begins where the last b command !él't nH} or at
location DS:0 f the command us hmnh l}rped For the first time. An address Yy u_nn-.l-.r of
a segment-offset address or just an offset

[EQO0:0 I{ﬁfgmu‘l‘lr-nffﬁﬂt]
" .y 34 11 ;ﬁq : + ES:2004 o [segment register-offset)
PR 1‘I[J‘; mhm — —Lm_‘,[t:lffm't}

The default segment is D5, so it-is-not necessary to specify segment m

dump an offset from another segment location.
A range may be given, teliing DEBUG to dump all bytes within the range :
D 100, 200 5 Dump DS:0100 through 0200
Other segment registers or absolute addresses may be used, as shown in the following

BN I!'I'lPll,-.'!i. "

8 = .l\. y

Examples '

1. D Dump 128 bytes from the last referenced location.

2. DS50A Dump the bytes at offsets 0-A from 55

3. D 3000 Dump 128 bytes at offset zero from segment 0300h.

4 D02 Dump offset 0-200 from D5. B

5 DINL2 Dump 20th bytes, starting at offset 100h from DS.
E (Enter)

The E command places individual bytes in memory. We must supply a starting
memory location where the values will be stored. If only an offset value is entered, the
offset is assumed to be from DS. Otherwise, a 32-bit address may be entered, or another
segment register may be used. The syntax is :

E address Enter new byte value at address
E address [list] Replace the contents of memory starting at the
specified address with the values contained in the list.

To begin entering hexadecimal or character data at DS:200, type E 200. Press the space
bar to advance to the next byte, and press ENTER to stop. To enter a string into memory
starting at location C5:200, type E C5:200 “This is a string”. -

Microprocessors and Interfacing cC-3 _ : - Appendix - C

F (Fill) fy

The F command fills a range of memory with a single value or a list of values. The
range must be specified as two offset addresses or segment-offset addresses. The syntax is:

F range list

Examples
1. F 100200, © 7 Fill with spaces.
2. F C5:0100 C5:0200, FF Fill with hex OFF.
3.F200 L 30 A Fill 30 hex bytes with the letter
"A’, starting at location 200.
6 (Exeeate) ’

The G command executes the program in the memory. We can specify a starting
address and a hreak]:lu'lnt, causing the program to stop at a Eiverl address. The syntax %

G [= startaddress] brkptaddress [brkptaddress...]

If no breakpoint is specified, the program runs until it stops by itself and returns to
DEBUG. Up to 10 breakpoints may be specified.

Examples
1. G Execute from [P to the end of the program.
2.G 100 Execute from the IP to C5:100h and stop.
3. G = 100 500 Begin execution at offset 100h and stop before
the instruction at offset 500h
H (Hexarithmetic) i

The H command performs addition and subtraction on two hexadecimal numbers,
entered in the following syntax :

H valuel value2
Example
H 10 20 Hexadecimal values 10 and 20 are added and subtracted
0030 (010 « displayed by Debugger

Hidden page

Hidden page

Microprocessors and Interfacing C-6 Appendix - C

T (Trace)

The T command executes one or more instructions from the current CS:IP location or
an ophonal address, if specified. The contents of the registers are shown after each
instruction is executed. The syntax is :

T [= address] [, value)

Examples
LT Trace one instruction from the current location
2Th Trace five instructions. .
3T=510 Start tracing at C5:5, and trace the next 16 steps.

This command traces individual loop iterations, so we can use it to debug statements
within a loop. Also, the T command traces into procedure calls, whereas the P command
executes a procedure call in its entirely without tracing.

U (Unassemble)

The U command translates memory into assembly language mnemonics. This is called
unassembling or disassembling memory. If we don't specify an address, debugger
disassembles from the location where the last U command is left off. If the command is
used for the first time after loading debugger, memory is disassembled from location CS5 :
100. The syntax is :

Syntax 1: U [address]

Syntax 2@ U [range]

Examples
1. IJ Unassemble the next 32 b}'teﬁ from the current location.
2U0 Unassemble 32 bytes from location 0.

3. U 100, 200 Unassemble all bytes from offset 100h-200h.

W (Write)

The W command writes a block of memory to a file or to individual disk sectors. If we
want to write to a file, it must first be initialized with the N command. (If the file was just
loaded either on the DOS command line or with the Load command, we do not need to
repeat the Name command.)

Mace the number of bytes to be written in BX and CX (BX contains the high 16 bits,
and CX contains the low 16 bits). If a file is 256 bytes long, for example, the BX and CX
registers will contain the following :

BX = D00 CX = 0100

Microprocessors and Interfacing cC-T Appendix - C

Examples
1. N MYFILE.COM Initialize the filename MYFILE.COM
on the default drive.
2RCX 20 Set the CX register to 20h, the length of the file.
iw Write 20h bytes to the file, starting at CS : 100.
4 WO Write from location C5 : 0 to the file.

Qg

(C - 8)

Microprocessors
& Interfacing

%% Chapterwise University Questions with Answers E

(F-1)

Hidden page

Hidden page

8086 Instruction Set and
Assembly Language Programming

Q.1 [scuss parious branch instruckion of 8086 mucroprocessor, that are u.ﬂ:ﬁd _,ﬁ:rr
relocation. [April/May-2005, Set-1, 8 Marks; April/May-2006, Set-1, 8 Marks]

Ans. : Refer section 3.7,

Q.2 It 15 necessary to check whether the word stoved in location $000H: AUNH s posthive

Ans,

number of not. Show all possible ways of testing the above condition and store 00H if
the condition is satisfied in location 3000 : 2002. Otherwse slore 0FFH.

[April/May-2005, Set-2, 16 Marks]
: Refer program 12 in chapter 4.

Q.3 Dustinguish between inter-segment and inbra-segment CALL imstructions and explain
with examples how they are execubed. [April/May-2005, Set-2, 8 Marks]
Ans. : Refer section 3.7.1.
Q.4 Giw g neat flow chart and the corresponding 8086 assembly language program for
performing bubble sort in an array of N elements of 4-digit Hex number.
[April/May-2005, Set-2, Set-3, 8 Marks]
Ans. : Refer prograra 19 in chapter 4.

Q.5

Ans,
Q.6

Ans,

Whal is a procedure ! How is a procedure identified as near or far ?
[April/May-2005, Set-4, 8 Marks]
: Keter section 3.17.
Discuss the importance of procedures in assembly language programming.

[Nov/Dec.-2005, Set-1, 8 Marks]
: Refer section 3.17

Q.7 What 15 a recursive procedure 7 Write a recursive procedure to calulate the factorial of

Ans, :

number N, where N is a hwo-digit Hex number.
[ND"JDEC.‘EM&, Stt'zi s!’t"‘l,- 3 Hm]

Refer program 5 of chapter 4.

(P-4)

Microprocessors and Interfacing

P-5 80886 Instruction Set and ALP

Q.8

Ans. :

Q.9

Ans. :

Q.10

Ans. :

Q.11

What are the loop instructions of 8086 ? Explain the use of DF flag in the execution

of string instructions,
Eefer sections 3.8 and 3.6.

[Nov./Dec.-2005, Set-2, 8 Marks]

What instruction set support is provided m 8086 ? [Nov./Dec.-2005, Set-2, 4 Marks]

Refer section 3.3.

Develop a far procedure declared as PUBLIC to convert a 4-digit BCD number to its

equivalent hex mumber,

Refer program 13 of chapter 13.

[Nov./Dec.-2005, Set-3, 8 Marks]|

Give the assembly language implementation of the following.

1) DO WHILE i) FOR

Ans. ;i) DO WHILE

DO WHILE

|

Statemeant's

[Nov./Dec.-2005, Set-4, 8 Marks]

Assembly Implementation

Labg{
PRI,
------- } Instructions

Compare instruction

J conditional instruction

—— i condition s frue golo Label
Otherwise axit loop

Fig. 1

T -

Microprocessors and Interfacing P-6

8086 Instruction Set and ALP

ii) FOR

FOR

Initiatization of
varigble with initial coumnt

Statement's

Lipdate variable

Fig. 2
Q.12 Explain how IRET instruction is executed ?

Ans. : Refer section 3.11.

Labe :

Assembly Implementation

Initialize Register with
Initial value. For example,
MOV CX, D020H

Compare register value
with final valwe. For example,
CMP CX,0040H

i CX = 0030H euxit
For example, JE EXIT
Oiherwise continue

[nstructions

Update register value
For example, INC CX

G0 BACK. For exampla,
JMP Label

[Nov./Dec.-2005, Set-4, 8 Marks]

Q.13 Using a do-while construct, develop a sequence of 8086 instructions that reads a
character string from the keyboard and after pressing the enter key the character siring

is to be displayed again,
Ans, :
e model small
o stack 100
* dats

msl dbe 10, 1

3, 'Enter the string §'

buff db 80 dapis)

®» Code

start : mov ax, Bdata :

[April/May-2006, Set-1, 8 Marks]

[loads the address of

mov ds, ax ; data segment inm DE]

lea b=, buff ; get the address of buffer -

lea dx, msl ; display the message

Microprocessors and Interfacing P-7 BOBE Instruction Set and ALP

mov ah, 09H

int
back : mov
int
mov
inc
G
jnz
lea
Mo
int
monr
int
end start

< end

Z1H

ah, 01 ; BEead character

21H

[BX},AL ; 3ave the character
BX i Increment pointer
AL, 13 ; Check if it is enter
back i If not read next character
dx, buff ; Display the string
ah, 094

21h

ah, 4chy [Exit to

21h ; DOS)

Q.14 Discuss the addressing modes provided by 8086 and explain with examples.

[April/May-2006, Set-2, 8 Marks]

Ans. : Refer section 3.2

QA5 [t is necessary to define a block of data in 8086 assemble language program. The
length of the block is 80000 Bytes. Give the initialization of data segment for the

above data.

It is necessary to exchange second element and 70000™ element in the

above. Give the sequence of instructions to perform the above operation.

Ans. :

[April/May-2006, Set-2, 16 Marks]

* model large

data segment
buff db 65535 dup()

data ends

datal segment
buffl dib 14463 dupil

datal ends

code segment

assume cs : code, ds : data

Microprocessors and Interfacing | P-8 ki 8086 Instruction Set and ALP

Start : mov ax, data ; [Initialize
mov ds, ax ; data segment]
lea bx, buff ; get the address of buff
mov CLy [bx + 1] H get data
maoyv ax, datal : [Initialize
mov ds, ax ; datal segment]
lea bx, buffl i get the address of buffl
mov 51, 4463 i load offset
mov ch, [bx+si] H get data
mov [bx + si], el ;i store data
mov ax, data H [Initialize
mov da, ax : data segment]
lea bx, buff H get the address of buff
mov [Bx+l], ch H store data
mow ah, 4CH H [Terminate to
int 21 H : DOsS]
code ends
end start

Q.16 Explain the wse of addressing mode. It is necessary to move a byte from location
4000H : 2000H to 4000H : 2005H. Give all possible methods using 8086 addressing
miodes. [April/May-2006, Set-3, 8 Marks]

Ans. : Refer section 3.2,

QA7 Explain in detail the coding template for 8086 MOV instruction.

[April/May-2006, Set-3, 8 Marks]
Ans. : Refer section 3.19.

QA8 It is necessary to declare a program as a public procedure to be accessible by other
programs. Give the sequence of assembly language statements. An external program

called “fact” is to used in this program. Show the required statements.
[April/May-2006, Set-3, 8 Marks]
Ans. : Refer section 3.12.3.

Microprocessors and Interfacing P-9 B086 Instruction Set and ALP

Q.19 [t 15 necessary to check whether the word stored i location 3000H : 2000H is zero or
not. Show all possible ways of testing the above condition using different addressing
modes and store OFFH if the condition is satisfied in location 3000H : 2002H.
Otherwise store 00H. [April/May-2006, Set-4, 16 Marks]

Ans. : Refer section 3.2,

Qi

Ans. ¢

Ans, ¢

Assembly Language Programs

Develop an 8086 assembly language program that will determine if a given sub-string
is present or not i a main string of characters. Place the result as 'P° if present else
place "N in memory location “resull’. [April/May-2005, Set-4, 8 Marks]

- + Reter program 18,

L.I'.t;z'ug [F ﬂ:i:.;" il ﬁtrijrg mmstructions, wrike an u.ﬂ:-'{'rrr.!:u'_l,r J’ﬂr:g:r.r;gr program o move
a black of data of length N from source to deshination. Assume all possible conditions.

[Nov./Dec.-2005, Set-1, 8 Marks]

Refer program 11.

Develop a near procedure to find the GCD of two numbers of 2-digit Hex. Use s
procedure to find the GCD of three numbers. [Nov./Dec.-2005, Set-3, 8 Marks]

Refer program 22.
N |

(P -10)

Hidden page

Microprocessors and Interfacing P-12 8086 System Configuration

O Map :

BHE| Ay AL "y Ay Ry Ay A Ay [Ay Ag A Ay Ay Ay A A u:ldﬂ. VO Device
1ty o o of1r 1 1 1{(0 O 0 OO0 O O 0O |OFODOH]| 1-data
i1 o ¢ o011 1+ 4 1|0 O O O(0 O 1 0O }OFOZH] 1-status
0! o o o1 + 1 1|0 0 O 0|0 O O 1 |O0OF0IH|2-data
D. a o 4 o911 1 T 1|0 0 O o0 0 1 1 |0OF03H| Z-status
Tty0 o0 ¢ o1 4 1 110 O O OO0 1 0 O |O0F04H | 3-data
1.0 0 @ o0f{1 1 i 1)0 9 O 0|0 1 1 0 |0OF0SH | 3-status
opyo o o o011 1+ 1 1|0 O 0 0|0 1 0 1 |O0FO5H,|4-data
olo o o of1 1 1 1|0 o 0 0|0 1 1 1|0FO7H| 4-status
i1y0 o ¢ 01 1 1 1|0 O 0 091 © 0O O |OF0EH|S5-data
ityo0o o o o1 1 1 10 0 O 01 O 1 0 |0OF0AH| 5-status

Instruction sequence to read and store status of each /O device

MOV DX, OFO0ZH

IN AL, DX } Fead status 1

MOV LOC1, AL ! Store it

MOV DX, OF03H

IN AL, DX i Fead status £
. MOV LOC2, AL H Store it

MOV DX, OFO&H

IN AL, DX i Fead status 3

MOV LOC3, AL : Store 1t

MOV DX, QFO7H

IN AL, DX i Fead status 4

MOV LOC4, AL i Store it

MOV DX, QFJAH

IN AL, DX i Read status 5

MOV LOCS5, AL H Store 1t

Q.3 Ina home PC with 8088 processor, SRAM s providea jrom O0000H an: EPROM

ends with the address of FFFFFH. The mpﬂcily of SRAM is 256 KB and that of
EPROM s 32 KB. All the chips are of size 32 KB. Give the address map for

individual chip and design the complete memory interface.
[April/May-2005, Set-2, 16 mml

Ans. : Refer section 5.10.

Microprocessors and Interfacing P-13 8086 System Configuration

Q.4 Describe the function of the following pins and their use in 8086 based system.

a) NMI b)) LOCK «¢) TEST d} RESET. [April/May-2005, Set-4, 16 Marks]
Ans. : Refer section 5.2.
Q.5 Describe the function of the following pins in 8086 maximum mode of operation.

(a) TEST

(b RQAGT, and RQAGT,

ic) Q5 and Q5

(d) 5,,5,.5, [Mov./Dec.-2005, Set-1, 16 Marks]
Ans. : Refer section 5.2
Q. 6 With a sketch explain 74L5138 decoder and its use. [Nov./Dec.-2005, Set-1, § Marks]
Ans. :

Vee
¥
s —— 'ﬂ“ T 3
3 inputs § ——q A, -
—— ""2 3:8
Decoder A
T4LS138 Y, > Bm mnutnuu
Active high enable ———E, ¥
¥
Active low {—'-"—' E,
enable signals | — 1 E, ¥)

GND
Fig. 2

The IC 74L5138 is a 3 : 8 decoder. It has 3 input lines (select lines), 8 output lines
(Active low) and three enable signals : E,,E, and E,. To make decoder

active E; should be high, and E, and E, should be low. Once 74L5138 is enabled,
according to the inputs A ,, A, and A, one of the output pin is activated.

Microprocessors and Interfacing P-14 B086 System Configuration

Function Table of 74L5138§ :

INPUTS OUTPUTS
E, | E, | Eo | A | A | A | D 1 2 3 4 | 5 B 7
H | x| x| x| x| x| H|H|H|H|H|H|H]|]H
X H X X X X H H H H H H H H
Xolox | L Xx | x | x | H | H|H|H|H|H|H]|H
L L H | L L L L | H|H|H|H|H]|H|H
L L H H L L H L H H H H H H
L L | W | v | H | L|H|H|L|IH|H|H]H]H
L L H | H|H]L|H|H|H|]L|H|H]|HI]|H
L L H L L H H H H H L H H H
L L H H L H H H H H H L H H
L L | H#H | L |H|H|H|H|H|H|H|H|LI|H
L L H H H H H H H H H H H L

The 7415138 decoder is used for generating chip select signals by decoding the
address.

Q. 7 Generate chip select signals with the help of 7415138 to six memory chips of size

16 kB, with the address map from 00000H to 17FFFH.
[Nov./Dec.-2005, Set-1, 8 Marks]

Ans. : The 16 kB memory requires 2'* address lines, ie. A, - Ay The remaining

address lines are used as a decoder input.

At Ay : CSyto chip 0

Mg A, -~ CS;tochip 1

A A, 3:8 YE CS, to chip 2

saccser b Y 5 oo

S5, to chip 4

Aw—[:)FE; Ys CS, to chip 5
Ay E,
Mg [

Fig. 3

Hidden page

Microprocessors and Interfacing P-16 8086 System Configuration

Q. 10 A target system based on 3086 processor uses less amount of SRAM. The programs

are stored m EPROM that starts from FOXOH ends with the address of FFFFFH.

The capacity of SRAM 15 8 KB inlerfaced address O0000H. The chip size is 8 KB for
EPROM and SRAM. Show the compiete memory interface.

[Nov./Dec.-2005, Set-2, 16 Marks]

Ans. : Kefer section 5.10.

Q. 11 What is the purpose of ALE, BHE, DT/R and DEN pins of 8086 7 Show their timing
in the system bus cycle of 8086 . [Nov./Dec.-2005, Set-3, 8 Marks]

Ans. : Refer section 5.2.
Q. 12 Why 8086 memory is mapped into 2 byte wide banks 7 What logic levels are found
with BHE and AU when 8086 reads a word from the address 0ADAH 7
[Nov./Dec.-2005, Set-3, 8 Marks ; April/May-2006, Set-1, Set-4, 8 Marks|

Ans. : Refer section 5.3.
Q. 13 Distinguish between a memory read and write machine cycle. Draw the Liming
diagrams in minimum and maximum modes of operation,

[Mov./Dec.-2005, Set-4, 16 Marks]

Ans. : Refer section 5.6.3.

Q. 14 In an SDK-86 kit 128 KB SRAM and o4 KB EPROM s provided on system and
provision for expansion of another 128 KB SEAM is given. The on system SRAM
address starts from QDDDOH and that of EPROM ends with FFFFFH. The expansion
slot address map is from S0000H to SFFFFH. The size of SRAM chip s 64 KB.
EPROM chip size is 16 KB. Give the complete memory interface and also the address

map for individual chips. [Nov./Dec.-2005, Set-4, 16 Marks]|
Ans, : Flease refgr” Fig. 5 on next page.
Memory map :
iii !'I'l "'l-l A"lT A’!l ."II '“'“- "'ll ""‘H: ."" "'II '.1 A-I "]' "l '.'I- "i- '.'H- "I '.'I- "- MI::F-. Memory
101 1 1 1|1 0 0 o|lo 0 0 0|0 0 O O|0 O O O |FEOOOH |Even
1 i 1 ® 191 1 1 {1 1 1 141 v 1 111 1 1 0 |FFFFEH |EFROMI
o |1 1 1 1|1 0 0o olo 0o o ofo 0 0 |0 O O 1 |FEOOIH |Oud
o |1 1 1 1|1 0 0 of1 1 1 11 1 1 1|1 1 1 1 |FEFFFH |EPROM2
1 o 0 0o o0 O O OO O Q OO0 QO O Q|0 0O O 00000 |Even
1o o o oflr 1 1 101 1 1 1|1 1 1 1|1 1 1 o|oFFFEM [RAMI
1] o 0 0 oo O O OfjO O QO OO O O OO 0O 0O 1 |0000MH |Odd
oo o o ofv 1 1 tf1 1 1 1|1 11 1|1 1 1 1 |oFFFFH |RAM2
1|1 o 0o o|lo o o o|0 o o 0|0 0 O 0|0 © O O |BOOOOH |Even
11 0 o of1 1 1 1|1 1 1 1|1 1 1 1|1 1 1 0 |6FFFEH |RAMZ
1] i & ¢ o)0 0 0 ©O©fjO0 O O OjO0 O O @ |0 O 0O 1 |B000MH |Odd
o |1 o o oflv 1 v tl1 o1 o1 o1l o1 o1 1|1 o1 1 1 |eFFFFH |Ramz

Microprocessors and interfacing P-1T7 B808€ System Configuration

|§§
sf od [BEBEE
PN
3
l{_‘l
< =
. 318
. " b
|8
g < 3
< i b
2 R 8
W &
|
N1 z
¢ 3L
" é :
=
a
N{: E ||_|
vl <
= 3
¢ if
£
A A=l
3
el =3 T o @ o jul
Ty
= '
— 111 1
§9 2 2 § SEFA"

B | Ii] gg ﬁi

3

Fig. 5

Hidden page

Direct Memory Access
(DMA) - 8257/8257

Q.1 Explain demand travisfer mode and block transfer mode of 8237,
[Nov./Dec.-2005, Set-1, Set-3, Set-4, 6 Marks]
Ans. : Refer section 6.9.

Q. 2 Show how 8237's are cascaded to provide more number of DRQ's and explain the
aperation. [Nov./Dec.-2005, Set-1, Set-3,5et-4, 6 Marks]

Ans. : Refer section 6.9.
Q.3 Explain how memory to memory transfer is performed with 8237
[Nov./Dec.-2005, Set-1, Set-3, Set-4, 4 Marks]

Ans. : Refer section 6.10.
Q.4 Explain with a neat sketch all registers of 8237 and their use in DMA transfer.

[Nov./Dec.-2005, Set-2, 16 Marks]

Ans. : Refer section 6.12.
Q.5 Explain single transfer mode and bock transfer mode of 8237

[April/May-2006, Set-2, 16 Marks]
Ans. : Refer section 6.9.

Q.6 With a neat sketch explain 8237 DMA controller and its application.
[April/May-2006, Set-4, 8 Marks]

Ans. : Refer sections 6.9 and 6.1.
Qg

(P - 19)

8255 PPI (Programmable
Peripheral Interface)

Q.1 Explain how to interface a stepper motor with 4 step input sequence to 8086 based
system with the help of hardware design. Write the instruction sequence to move the
stepper motor 10 steps in clockwise and 12 steps in anti-clockwise direction.

[April/May-2005, Set-1, 16 Marks]

And. : Refer section 7.12.

Q.2 Explain why 8255 ports are divided into two groups. Discuss how these groups are
controlled in different modes of operation. Explain different control signals and their
associated pins for bi-directional 1/O mode of operation.

[April/May-2005, Set-2, 16 Marks; Nov./Dec.-2005, Set-3, 16 Marks ;
April/May-2006, Set-1, Set-Z, 8 Marks]

And. : Refer section 7.4.

Q.3 Interface a 12-bit DAC to 8255 with an address map of 0CO0H to OCO3H. The DAC
provides output in the range of + 5 V to - 5 V. Write the instruction sequence.

{a} For generating a square wave with a peak to peak voltage of 4V and the frequency
will be selected from memory location °F'.

(b) For generating ¢ triangular wave with a maximum voltage of + 3V and a
minimum aof — 2 V. [Nov./Dec. - 2005, Set-1, 16 Marks]

Ans. :

Interface :

Please refer Fig. 1 on next page.

Resolution ﬂ"u’_
2:1 -1

2442 mV

(P -20)

Microprocessors and Interfacing P - 21 8255 PPl (Programmable Peripheral Interface)

AD, AD, {?E::::::J b v,
ADy AD;

FAz
MEMR RD PEy
MEMW WRo2 :>1=33 _ Vo
Resat Out——=] Resat 5
Fl:,:, Laich
Ay ——=1 Ay
A.1 e .’L1
cs
A
Ag
A'“:I
Ayy
A
Fig. 1
Digital data Equivalent Analog Output Voltage
O00oH -5V
FFFH +5V
TFFH 0w =
4CCH -2V
CCCH 3N
E&5H 4\
19AH =4V
a) Generating square wave :
L¥XI 5P,27FFH ; Initialize stack pointer

MVI A, BOH 3 Imitialize B255 to configure
ETA OCO3H i PA, PB and PC as output

Loop @ MVI A, SAH i Load and send digital daca
STA OCOOH i correaponds to =4V

and Interfaci

MVI A, O1H
STA OCO1lH
MVI A, 01H
STA 0CO2H
NOP

MVIA, O0OO0H
STA OCO2H
CALL Delay
MVI A, 63 H
STA OQCOODH
MVI A, OEH
STA OCO1H
MVI A, OlH
STR DCODZH

MVI B, O0H
STA 0OCO2H

CALL Delay
JMP LOOP

Delay : LDA 'F’
BACK : DCE A

JHZ . BRCE
RET

.

-

P.22. ble Interface

Enable latch signal

Wait for OFF pericd
Load and send digital data

corresponds to + 4 V

Enable latch signal

Wait for OH period
Repeat

Fead the delay count which is
inversely proporticnal to freguency
Decrement count

Check if count = 0; otherwise repeat

Feturn to main program

b) Generating Triangular Wave :

LXI Sp, 27FFH
MVI A, B0 H
STA OCD3H

BACK : LXI H, 04CCH

LOOBL : SHLD OCOOH
CALL LATCH
INX H

: Initialize stack pointer
f Initialize B255 to configure
i FA, FB and PC as output

! Load and send digital data
; correspond to -2V

! Increment digital data

Microprocessors and Interfacing P - 23 8255 PPI (Programmable Peripheral Interface)
MOV AR, L H Check digital data for positive
CPI CCH i peak output {+3)
JNZ LOOPL
MOV A, H
CPI OCH
JNZ LOOPL

LOOPZ : SHLD OCODOH ! Zend digital data

CALL LATCH
DCX H

-

Decrement digital data
MOV A, L i Check digital data for negative
CPI CCH
JNZ LOOP2
MOV B, H
CPFI 04H
JNZ LOOP2
JME BACE
LATCH : MVI A, OlH H Enable latch signal
STA OCOZ2H
HNOP
MVI A, OO0H

e

peak output (-2}

e

Repeat

S5TA OCO2H
Q. 4 Write the necessary instruction sequence to initinlize 8255 with address 0CO0OH to

OCO3H for the following combinations.

a) Port A as input port in mode 1 and port B as input port in mode 1 without the
interrupt driven IJO.

b) Port A in mode 2 as output port and port B as input port in mode 0 with
interrupt driven 1/0.

c) Port A in mode 0, port C upper half as input ports and port B as input port in
mode 1 with interrupt driven [/O.

d) Port A as output port in mode 1 with active interrupt, port B as inpul porf in
mode 0 and port C lower half as output port in mode 0.

[Nov./Dec.-2005, Set-4, 16 Marks]
Ans. : Refer section 7.5.

Microprocessors and Interfacing P -24 8255 PPl (Programmable Peripheral Interface)

Q. 5 It is necessary to mitialize intervupt for mode 1 operation of port -A as input and
port-B as outputl in the same mode with the 8255 address map of (MO0H lo 0700H.
Gire the complete hardware design to inferface 8255 to 8086 processor with this
address map. Wrike the instruction sequence for the initialization of 8255 in the above
modes. Give the instruction sequence to change the operation modes of port A, port B,
port C lower-half and port B to mode O input ports.

[April/May-2006, Set-4, 16 Marks]

Ans. : Refer sections 7.7 and 7.5.
aaQa

Hidden page

Microprocessors and Interfacing P-26 8086 Interrupts

Q. 7 Address 000EOH in the inlerrupt vector table contains 4132H and address (000E2ZH
contains 040H.

i) To what interrupt type do these locations correspond ?
i) What is the starting address for the interrupt service routine 7
[April/May - 2005, Set-3, Set-4, 4 Marks]
Ans. : Interrupt vector Table :

)]
Tl
|
i

ODOE3H 0oH C5 (High)
DODEZH 40H G5 (Low)
OOOETH 41H IP (High)
000EOH a2H IP (Low)
T o
Fig. 1
i) Interrupt type = E0H/4 = 224/4 = 56 in decimal
iy C5 = 0040H IP = 4132 H
oo40[a]
+ 4132

Starting address of ISR = 0453 2 H

Q. 8 What is the purpose of operational command words of 8259 7 Explain their format
and He nse. [Nov./Dec.-2005, Set-1, 8 Marks]

Ans. : Refer section 8.5.5.

Q.9 Wiat detailed hardware and the associated algorithm, explain how a real time clock
will be implemented in an 8086 based system 7 [Nov./Dec.-2005, Set-2, 16 Marks]

Ans. : Please refer Fig. 2 on next page.
Algorithm (Initialization) :
1. Initialize clock i.e. Hours, Minutes and Seconds.
2. Load the address of ISR in interrupt vector table at 0008H.

3. Wait Ton mkerrupt.

Microprocessors and Interfacing P-27 w0, B0B6 Interrupts

Vee ,
38 pF JA0K 16
T [F—a—wwn—y 10
= A 4060 Q44 Qutput frequancy
[32768 Hz §15|.m N T
1 . ! 1
J_ 10 pF

et Ty A1

Chivide
by
2

Fig. 2
Algorithm (Interrupt service routine) :
1. Save registers,
2. Increment seconds.
3. If seconds = -E-ﬂﬂ'rla.ke seconds = 0 and increment minutes.
4. Tf minutes = 60, make minutes = 0 and increment hours.
5. If hours = 13, rtiznke hours = 1.

6. Return to main program.

Q. 10 Write an initialization sequence for an 8259 that is the only 8259 in an 8086 based
system, with an even address of OFOH that will cause.

) Request to the edge triggered mode

b) IR, request to an interrupt type 30

c) SP/EN to output a disable signal to the data-bus fransceivers

d) The IMR to be cleared

¢} The highest priority interrupt wnll be IR . [Nov./Dec.-2005, Set-3, 16 Marks]

Ans. : Refer section 85.5.
Q.11 Draw the Mock diagram of 8259 and explain each block ?
[Nov./Dec.-2005, Set-4, 8 Marks]
Ans. : Refer section 8.5.2.
Q. 12 Under what conditions type 0 interrupt is initiated ? List out the instructions that
may cause type O interrupt, [April/May - 2006, Set-1, Set-2,5et-3, 6 Marks]

Ans. : Refer section 8.3.1.

Microprocessors and Interfacing P-28 8086 Interrupts

Q.13 Explain the following terms with reference to §259.
(a} END of interrupt
(b) Automatic rotation
fc) Poll command
{d) Rend resister command [April/May-2006, Set-4, 16 Marks]

Ans. : Refer section 8.5.4.
aag

Serial Communication

P

Q.1 Discuss the Command instruction and Status reqister format of 8251.
[April/May-2005, Set-1, Set-2, 8§ Marks]
Ans. : Refer sections 10.4.4 and 104.5.
Q.2 Draw the block diagram of 8251 and explain each block.
[April/May-2005, Set-3, 8 Marks]
Ans, : Refer section 10.4.3.
Q.3 Draw the flowchart showing how synchronous serial data can be sent from a port line
using software routine. [April/May-2005, Set-3, 8 Marks]
Ans. : Refer section 10.4.6.
Q.4 Discuss the serial data transmission standards and their specifications.
[April/May-2005, Set-4, 8 Marks]

Ans. : Refer section 10.5.

Q.5 A terminal is transmitting asynchronous serial data at 2400 bd. What s the bit time?
Assuming 7 data bits, a parity bit and 1 stop bit how long does it take to transmit
one character ? [April/May-2005, Set-4, 8 Marks]

Ans. : Refer section 10.5.

Q. 6 Write an nitialization sequence to operate 8251 in asynchronous mode with 8-bit
character size, baud rate factor 64, two stop bits and odd parity enable. The 8251 is
interfaced with 8086 at address 082H. [April/May-2006, Set-1, 8 Marks]

Ans. : Mode word for given specification is as follows.

[1]J1]Jo]J1]1 1] 1] 1] =DFH
2stop Odd Character factor 64
bits parity length

B - bits

Fig. 1

(P - 29)

Hidden page

Microprocessors and Interfacing P-31 Serial Communication

Q. 10 How do we connect R5-232C equipment

1) To data terminal bype devices ?

i) To serial port of SDK - 86, R8-232C connection ?
[April/May-2006, Set-3, 10 Marks, Set-4, 8 Marks|

Ans. : Refer section 10.5.
Q.11 Give the specifications of RS-232C. [April/May-2006, Set-3, 6 Marks]

Ans. : Refer section 10.5.

Qoa

8051 Microcontroller

Q.1 Discuss the following signal descriptions
i) INTo/INT1 i) TXD
ii) T, and T, iii) RD [April/May-2005, Set-1, 8 Marks]
Ans. : Refer section 11.3.1.
Q. 2 Draw and discuss the formats and bit definitions of the following SFRs in 8051
microcontroller.
i) TMOD i) PSW [April/May-2005, Set-1, 8 Marks]
Ans. : Refer sections 11.7.2 and 11.3.6.3.
Q. 3 Draw and discuss the formats and bit definitions of the following SFR's in 8051

microcontroller.

al PSW b} IE ¢} SCON d) TMOD
[April/May-2005, Set-2, 8 Marks ; April/May-2006, Set-3, 8 Marks]

Ans. : Refer sections 11.3.6.3, 11.9, 11.8 and 11.7.2.

Q. 4 Discuss the interrupt structure of 8051, Mention the priority. Explain how least
priority 15 made as highest priority. [April/May-2005, Set-3, 8 Marks ;
Nov./Dec.-2005, Set-1, 8 Marks, April/May-2006, Set-2, 8 Marks|
Ans. : Refer section 11.9.)
Q. 5 Draw and discuss the formats and bit definitions of the following SFR’s in 8051
microconiroller.

al) I[P b TMOD ¢) TCON d) SCON
[April/May-2005, Set-4, 16 Marks ; Nov./Dec.-2005, Set-2, 8 Marks]

Ans. : Refer sections 11.9.1, 11.7.2 and 11.8.
Q.6 Explain the alternate functions of Port 0, Port 2 and Port 3.

[Nov./Dec.-2005, Set-1, 8 Marks ;
Nov./Dec.-2005, Set-3, 8 Marks ; April/May-2006, Set-2, 8 Marks]

Ans. : Refer section 11.3.1.

(P - 32)

Microprocessors and Interfacing P-33 8051 Microcontroller

Q.7 Discuss the following signal descriptions.
i) ALE/PROG 1) ﬁl."'l"'”. i) PSEN i) RXD [Nov./Dec.-2005, Set-2, 8 Marks]
Ans. : Refer section 11.3.1.
Q.8 Discuss the reqister set of MCS5-51 family of microcontrollers.
[Nov./Dec.-2005, Set-3, 8 Marks]
Ans. : Kefer section 11.3.6.
Q.9 Discuss the following signal descriptions.
{a) ALEfPROG (b) EA[Vy, (c) PSEN (d) RXD
e} INT,/INT, (i TXD (g) T, and T, (h) RD
[April/May-2006, Set-1, 16 Marks]
Ans. : Refer section 11.3.1.
Qaa

Hidden page

Hidden page

Contents

® An overview of BIRS, Architecture of 8086, Microprocessor. Special functions of general purpose registers, 3086 flag
register and function of B0S5 flags,

® Addressing modes of B0BS, Indruction set of 886, Adsembler direciives simple programs, Procedures, and Macros,

» Assembly language programs involving logical, Branch and Call instructions, Sorting. Evaluation of arithmetic
axcpressions, String manipulstion,

Pin diagram of B0B6-Minimum mode and maximum mode of operation, Timing disgram. Memory interfacing 1o
BORG [Seadic FAM and EPROM), Need for DMA. DMA data ransfer method, Interfacing with 82378257,

» B255 PPI-Various modes of operation and interfacing 1o 8086, Interfacing kevboard, Displays, Stepper motor and
achaatars, DVA and A'D eormverter interfacing.

Inerrupd structure of RO, Vector mierrupt table, [merrupt service routines, Infroduction o DOS and BIOS inderrupts,
B25% PIC architecture and imterfacing cascading of intermupl contraller and its importance.

Seral data ransler schemes, Asynchronous and synchronous data transfer schemes, B251 USART architecture and
interfacing, TTL to RS 232C and RS232C to TTL conversion, Samphk program of sevial dats ransfer, Introdisction io
High-speed serial communications standands, USE,

8 B05]1 Microcontroller architecture, Register set of B051, Modes of tmer operation, Serlal port operation, Intermept
siructure af BOS1, Memory and 10 interfacing =051

First Edition : 2009

Price INR 285/-
B [SBN 81-8431-115-7
LDRE [SBN 978-81-8431-125-9

Technical Publications pune " ‘ ‘ ||
1, Amit Residency, 412 Shaniwar Peth, Pune - 411030, M.5., India.
Telefax : +91 (020) 24495496/97, Email : technical@vtubooks.com

Visit us at : www.vtubooks.com gl 78 5 18 4 13

i . —

